Created by T. Madas

Question 13 (***)
The curve C has equation

$$
2 \cos 3 x \sin y=1, \quad 0 \leq x, y \leq \pi
$$

a) Show that

$$
\frac{d y}{d x}=3 \tan 3 x \tan y .
$$

The point $P\left(\frac{\pi}{12}, \frac{\pi}{4}\right)$ lies on C.
b) Show that an equation of the tangent to C at P is

$$
y=3 x
$$

proof

Created by T. Madas

Question 14 (***)
A curve has equation

$$
3 x^{2}-x y+y^{2}+2 x-4 y=1 .
$$

a) Show clearly that

$$
\frac{d y}{d x}=\frac{2+6 x-y}{4-2 y+x} .
$$

b) Hence show further that the value of x at the stationary points of the curve satisfies the equation

$$
x^{2}=\frac{5}{33} .
$$

proof

Created by T. Madas

Question 39 (****)

The equation of a curve is given implicitly by

$$
4 y+y^{2} \mathrm{e}^{3 x}=x^{3}+C,
$$

where C is a non zero constant.
a) Find a simplified expression for $\frac{d y}{d x}$.

The point $P(1, k)$, where $k>0$, is a stationary point of the curve.
b) Find an exact value for C.

$$
\square, \frac{d y}{d x}=\frac{3\left(x^{2}-y^{2} \mathrm{e}^{3 x}\right)}{2\left(2+y \mathrm{e}^{3 x}\right)}, C=4 \mathrm{e}^{-\frac{3}{2}}
$$

Created by T. Madas

Question 40 (****)
A curve C has implicit equation

$$
y=\frac{2 x+1}{x y+3} .
$$

a) Find an expression for $\frac{d y}{d x}$, in terms of x and y.
b) Show that there is no point on C, where the tangent is parallel to the y axis.

$$
\square, \frac{d y}{d x}=\frac{2-y^{2}}{2 x y+3}
$$

Created by T. Madas

Question 49 (****)
The equation of a curve is given implicitly by

$$
y^{2}-x^{2}=1, \quad|y| \geq 1 .
$$

Show clearly that

$$
\frac{d^{2} y}{d x^{2}}=\frac{y^{2}-x^{2}}{y^{3}} .
$$

Created by T. Madas

Created by T. Madas

Question 4 (**+)

The binomial expression $(1+x)^{\frac{1}{3}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Determine the expansion of $(1+x)^{\frac{1}{3}}$, up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $(1-3 x)^{\frac{1}{3}}$, up and including the term in x^{3}.
c) Use the expansion of part (a) to find the expansion of $(27-27 x)^{\frac{1}{3}}$, up and including the term in x^{3}.

$$
\begin{array}{r}
1+\frac{1}{3} x-\frac{1}{9} x^{2}+\frac{5}{81} x^{3}+O\left(x^{4}\right), 1-x-x^{2}-\frac{5}{3} x^{3}+O\left(x^{4}\right) \\
3-x-\frac{1}{3} x^{2}-\frac{5}{27} x^{3}+O\left(x^{4}\right)
\end{array}
$$

Created by T. Madas

Question 5 (**+)

$$
f(x)=\frac{5 x+3}{(1-x)(1+3 x)},|x|<\frac{1}{3} .
$$

a) Express $f(x)$ into partial fractions.
b) Hence find the series expansion of $f(x)$, up and including the term in x^{3}.

$$
\square, f(x)=\frac{2}{1-x}+\frac{1}{1+3 x}, f(x)=3-x+11 x^{2}-25 x^{3}+O\left(x^{4}\right)
$$

Question 6 (**+)

$$
f(x)=\frac{2 x}{(1+2 x)^{3}}, x \neq-\frac{1}{2}
$$

a) Find the first 4 terms in the series expansion of $f(x)$.
b) State the range of values of x for which the expansion of $f(x)$ is valid.

$$
\square, f(x)=2 x-12 x^{2}+48 x^{3}-160 x^{4}+O\left(x^{5}\right),-\frac{1}{2}<x<\frac{1}{2}
$$

Created by T. Madas

Question 11 (***)

$$
y=\sqrt{4-12 x},-\frac{1}{3}<x<\frac{1}{3} .
$$

a) Find the binomial expansion of y in ascending powers of x up and including the term in x^{3}, writing all coefficients in their simplest form.
b) Hence find the coefficient of x^{2} in the expansion of

$$
\begin{aligned}
& (12 x-4)(4-12 x)^{\frac{1}{2}} . \\
& \quad \square, y=2-3 x-\frac{9}{4} x^{2}-\frac{27}{8} x^{3}+O\left(x^{4}\right),-27
\end{aligned}
$$

Created by T. Madas

Question 12 (***)

The binomial $(1+x)^{-\frac{1}{2}}$ is to be expanded as an infinite convergent series, in ascending powers of x.
a) Find the series expansion of $(1+x)^{-\frac{1}{2}}$ up and including the term in x^{3}.
b) Use the expansion of part (a) to find the expansion of $\frac{1}{\sqrt{1+2 x}}$, up and including the term in x^{3}.
c) State the range of values of x for which the expansion of $\frac{1}{\sqrt{1+2 x}}$ is valid.
d) Use the expansion of $\frac{1}{\sqrt{1+2 x}}$ with $x=-0.1$ to show that $\sqrt{5} \approx 2.235$.

$$
1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+O\left(x^{4}\right), \quad 1-x+\frac{3}{2} x^{2}-\frac{5}{2} x^{3}+O\left(x^{4}\right), \quad-\frac{1}{2}<x<\frac{1}{2}
$$

Created by T. Madas

Question 13 (***)

$$
f(x)=\sqrt{1-2 x}, \quad|x|<\frac{1}{2} .
$$

a) Expand $f(x)$ as an infinite series, up and including the term in x^{3}.
b) By substituting $x=0.01$ in the expansion, show that $\sqrt{2} \approx 1.414214$.

$$
f(x)=1-x-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}+O\left(x^{4}\right)
$$

Created by T. Madas

Question 4 (**+)

The figure above shows the curve C, given parametrically by

$$
x=t^{3}+3, y=\frac{2}{3 t}, t>0
$$

The finite region R is bounded by C, the x axis and the straight lines with equations $x=4$ and $x=11$.
a) Show that the area of R is 3 square units.

The region R is revolved in the x axis by 2π radians to form a solid of revolution S.
b) Find the volume of S.

$$
V=\frac{4 \pi}{3}
$$

Created by T. Madas

Question 5 (***)

The figure above shows the curve C, given parametrically by

$$
x=6 t^{2}, \quad y=t-t^{2}, \quad t \geq 0 .
$$

The curve meets the x axis at the origin O and at the point P.
a) Show that the x coordinate of P is 6 .

The finite region R, bounded by C and the x axis, is revolved in the x axis by 2π radians to form a solid of revolution, whose volume is denoted by V.
b) Show clearly that

$$
V=\pi \int_{0}^{T} 12 t\left(t-t^{2}\right)^{2} d t
$$

stating the value of T.
c) Hence find the value of V.

$$
\square, T=1, V=\frac{\pi}{5}
$$

Created by T. Madas

Question 11 (***+)

The figure above shows a curve known as a re-entrant cycloid, with parametric equations

$$
x=\theta-4 \sin \theta, \quad y=1-2 \cos \theta, \quad 0 \leq \theta \leq 2 \pi .
$$

The curve crosses the x axis at the points P and Q.
a) Find the value of θ at the points P and Q.
b) Show that the area of the finite region bounded by the curve and the x axis, shown shaded in the figure above, is given by the integral

$$
\int_{\theta_{1}}^{\theta_{2}} 1-6 \cos \theta+8 \cos ^{2} \theta d \theta
$$

where θ_{1} and θ_{2} must be stated.
c) Find an exact value for the above integral.

$$
\theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{5 \pi}{3}, \frac{20 \pi}{3}+4 \sqrt{3}
$$

Created by T. Madas

Question 12 (***+)

The figure above shows the curve C, with parametric equations

$$
x=t^{2}, \quad y=1+\cos t, 0 \leq t \leq 2 \pi .
$$

The curve meets the coordinate axes at the points A and B.
a) Show that the area of the shaded region bounded by C and the coordinate axes is given by the integral

$$
\int_{t_{1}}^{t_{2}} 2 t(1+\cos t) d t
$$

where t_{1} and t_{2} are constants to be stated.
b) Evaluate the above parametric integral to find an exact value for the area of the shaded region.

$$
t_{1}=0, t_{2}=\pi, \quad \operatorname{area}=\pi^{2}-4
$$

Created by T. Madas

Question 16 (****)

The figure above shows the curve C, with parametric equations

$$
x=4 \cos \theta, \quad y=\sin \theta, 0 \leq \theta \leq \frac{\pi}{2} .
$$

The curve meets the coordinate axes at the points A and B. The straight line with equation $y=\frac{1}{2}$ meets C at the point P.
a) Show that the area under the arc of the curve between A and P, and the x axis, is given by the integral

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 4 \sin ^{2} \theta d \theta
$$

The shaded region R is bounded by C, the straight line with equation $y=\frac{1}{2}$ and the y axis.
b) Find an exact value for the area of R.

$$
\text { area }=\frac{1}{6}(4 \pi-3 \sqrt{3})
$$

Created by T. Madas

Question 12 (***)

A curve C is given parametrically by

$$
x=4 t-1, \quad y=\frac{5}{2 t}+10, \quad t \in \mathbb{R}, t \neq 0 .
$$

The curve C crosses the x axis at the point A.
a) Find the coordinates of A.
b) Show that an equation of the tangent to C at A is

$$
10 x+y+20=0 .
$$

c) Determine a Cartesian equation for C.

$$
(-2,0),(x+1)(y-10)=10 \quad \text { or } y=\frac{10(x+2)}{x+1}
$$

Created by T. Madas

Question 13 (***)
A curve C is given parametrically by

$$
x=3 t-1, \quad y=\frac{1}{t}, \quad t \in \mathbb{R}, \quad t \neq 0
$$

Show that an equation of the normal to C at the point where C crosses the y axis is

$$
y=\frac{1}{3} x+3
$$

proof

Created by T. Madas

Question 24 (***+)

A curve C is defined by the parametric equations

$$
x=\cos t, \quad y=\cos 2 t, 0 \leq t \leq \pi .
$$

a) Find $\frac{d y}{d x}$ in its simplest form.
b) Find a Cartesian equation for C.
c) Sketch the graph of C.

The sketch must include

- the coordinates of the endpoints of the graph.
- the coordinates of any points where the graph meets the coordinates axes.

$$
\frac{d y}{d x}=4 \cos t, y=2 x^{2}-1,(-1,1)(1,1),(0,-1),\left(-\frac{\sqrt{2}}{2}, 0\right)\left(\frac{\sqrt{2}}{2}, 0\right)
$$

Created by T. Madas

Question 25 (***+)

A curve C is given by the parametric equations

$$
x=\frac{3 t-2}{t-1}, \quad y=\frac{t^{2}-2 t+2}{t-1}, t \in \mathbb{R}, t \neq 1 .
$$

a) Show clearly that

$$
\frac{d y}{d x}=2 t-t^{2} .
$$

The point $P\left(1,-\frac{5}{2}\right)$ lies on C.
b) Show that the equation of the tangent to C at the point P is

$$
3 x-4 y-13=0 .
$$

Created by T. Madas

Question 49 (****)

A curve C is given by the parametric equations

$$
x=\sec \theta, \quad y=\ln (1+\cos 2 \theta), \quad 0 \leq \theta<\frac{\pi}{2} .
$$

a) Show clearly that

$$
\frac{d y}{d x}=-2 \cos \theta .
$$

The straight line L is a tangent to C at the point where $\theta=\frac{\pi}{3}$.
b) Find an equation for L, giving the answer in the form $y+x=k$, where k is an exact constant to be found.
c) Show that a Cartesian equation of C is

$$
x^{2} \mathrm{e}^{y}=2 .
$$

$$
y+x=2-\ln 2
$$

Created by T. Madas

Question 3

Carry out the following integrations:

1. $\int \frac{1}{2} x \mathrm{e}^{4 x} d x=\frac{1}{8} x \mathrm{e}^{4 x}-\frac{1}{32} \mathrm{e}^{4 x}+C$
2. $\int 5 x \sin 4 x d x=-\frac{5}{4} x \cos 4 x+\frac{5}{16} \sin 4 x+C$
3. $\int(2 x+1) \cos 2 x d x=\frac{1}{2}(2 x+1) \sin 2 x+\frac{1}{2} \cos 2 x+C$
4. $\int-3 x \cos 4 x d x=-\frac{3}{4} x \sin 4 x-\frac{3}{16} \cos 4 x+C$
5. $\int x^{2} \mathrm{e}^{-2 x} d x=-\frac{1}{2} x^{2} \mathrm{e}^{-2 x}-\frac{1}{2} x \mathrm{e}^{-2 x}-\frac{1}{4} \mathrm{e}^{-2 x}+C$
6. $\int x^{2} \sin 5 x d x=-\frac{1}{5} x^{2} \cos 5 x+\frac{2}{25} x \sin 5 x+\frac{2}{125} \cos 5 x+C$
7. $\int x^{2} \cos \frac{1}{3} x d x=3 x^{2} \sin \frac{1}{3} x+18 x \cos \frac{1}{3} x-54 \sin \frac{1}{3} x+C$
8. $\int \frac{1}{2} x^{3} \ln x d x=\frac{1}{8} x^{4} \ln x-\frac{1}{32} x^{4}+C$
9. $\int x \ln 3 x d x=\frac{1}{2} x^{2} \ln 3 x-\frac{1}{4} x^{2}+C$
10. $\int \frac{\ln x}{x^{3}} d x=-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}+C$

Created by T. Madas

Created by T. Madas

Question 6

$$
f(x) \equiv 9 \sin x+12 \cos x, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $R \sin (x+\alpha), R>0,0<\alpha<\frac{\pi}{2}$.
b) Hence, solve the trigonometric equation

$$
\begin{aligned}
& 9 \sin x+12 \cos x=7.5,0<x<2 \pi . \\
& f(x) \equiv 9 \sin x+12 \cos x \cong 15 \sin \left(x+0.927^{\mathrm{c}}\right), x \approx 1.69^{\mathrm{c}}, 5.88^{\mathrm{c}}
\end{aligned}
$$

Created by T. Madas

Question 9

$$
f(\theta) \equiv 4 \sin \theta+3 \cos \theta, \theta \in \mathbb{R}
$$

a) Write the above expression in the form $R \sin (\theta+\alpha), R>0,0<\alpha<90^{\circ}$.
b) Write down the maximum value of $f(\theta)$.
c) Find the smallest positive value of θ for which this maximum value occurs.

$$
f(\theta) \equiv 4 \sin \theta+3 \cos \theta \cong 5 \sin \left(\theta+36.9^{\circ}\right), f(\theta)_{\max }=5, \theta \approx 53.1^{\circ}
$$

Created by T. Madas

Question 10

$$
f(x) \equiv \sin x-\sqrt{3} \cos x, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $R \sin (x-\alpha), R>0,0<\alpha<\frac{\pi}{2}$.
b) Write down the maximum value of $f(x)$.
c) Find the smallest positive value of x for which this maximum value occurs.

$$
f(x) \equiv \sin x-\sqrt{3} \cos x \equiv 2 \sin \left(x-\frac{\pi}{3}\right), f(x)_{\max }=2, x=\frac{5 \pi}{6}
$$

Created by T. Madas

Question 15

$$
f(x) \equiv 3 \sin x+\cos x, x \in \mathbb{R}
$$

a) Express $f(x)$ in the form $R \cos (x-\alpha), R>0,0<\alpha<\frac{\pi}{2}$.
b) Solve the equation

$$
f(x)=2 \text { for } 0<x<2 \pi .
$$

c) Write down the minimum value of $f(x)$.
d) Find the smallest positive value of x for which this minimum value occurs.

$$
f(x) \cong \sqrt{10} \cos \left(x-1.249^{\mathrm{c}}\right), x=0.363^{\mathrm{c}}, 2.135^{\mathrm{c}}, f(x)_{\min }=-\sqrt{10}, x=4.391^{\mathrm{c}}
$$

Created by T. Madas

Question 17

$$
f(x) \equiv 2 \sin x+2 \cos x, x \in \mathbb{R} .
$$

a) Express $f(x)$ in the form $R \sin (x+\alpha), R>0,0<\alpha<\frac{\pi}{2}$.
b) State the minimum and the maximum value of ...
i. $\quad \ldots y=f\left(x-\frac{\pi}{2}\right)$.
ii. ... $y=2 f(x)+1$.
iii. ... $y=[f(x)]^{2}$.
iv. $\ldots y=\frac{10}{f(x)+3 \sqrt{2}}$.
$f(x) \equiv \sqrt{8} \sin \left(x+\frac{\pi}{4}\right),[-\sqrt{8}, \sqrt{8}],[-2 \sqrt{8}+1,2 \sqrt{8}+1],[0,8],[\sqrt{2}, 5 \sqrt{2}]$

Created by T. Madas

Question 7 (***)

$$
x=4 \sin \theta+7 \cos \theta .
$$

The value of θ is increasing at the constant rate of 0.5 , in suitable units.

Find the rate at which x is changing, when $\theta=\frac{\pi}{2}$.

Question 8 (***)

Fine sand is dropping on a horizontal floor at the constant rate of $4 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ and forms a pile whose volume, $V \mathrm{~cm}^{3}$, and height, $h \mathrm{~cm}$, are connected by the formula

$$
V=-8+\sqrt{h^{4}+64} .
$$

Find the rate at which the height of the pile is increasing, when the height of the pile has reached 2 cm .

$$
\square, \sqrt{5} \approx 2.24 \mathrm{~cm} \mathrm{~s}^{-1}
$$

Created by T. Madas

Question 9 (***)

An oil spillage on the surface of the sea remains circular at all times.

The radius of the spillage, $r \mathrm{~km}$, is increasing at the constant rate of $0.5 \mathrm{~km} \mathrm{~h}^{-1}$.
a) Find the rate at which the area of the spillage, $A \mathrm{~km}^{2}$, is increasing, when the circle's radius has reached 10 km .

A different oil spillage on the surface of the sea also remains circular at all times.

The area of this spillage, $A \mathrm{~km}^{2}$, is increasing at the rate of $0.5 \mathrm{~km}^{2} \mathrm{~h}^{-1}$.
b) Show that when the area of the spillage has reached $10 \mathrm{~km}^{2}$, the rate at which the radius r of the spillage is increasing is

$$
\frac{1}{4 \sqrt{10 \pi}} \mathrm{kmh}^{-1}
$$

$$
10 \pi \approx 31.4 \mathrm{~km}^{2} \mathrm{~h}^{-1}
$$

Created by T. Madas

Question 10 (***)

Liquid dye is poured onto a large flat cloth and forms a circular stain, the area of which grows at a steady rate of $1.5 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.

Calculate, correct to three significant figures, \ldots
a) \ldots the radius, in cm , of the stain 4 seconds after it started forming.
b) ... the rate, in $\mathrm{cm} \mathrm{s}^{-1}$, of increase of the radius of the stain after 4 seconds.

$$
\square, r=\sqrt{\frac{6}{\pi}} \approx 1.38 \mathrm{~cm}, \sqrt{\frac{3}{32 \pi}} \approx 0.173 \mathrm{~cm} \mathrm{~s}^{-1}
$$

Question 11 (***)

The variables y, x and t are related by the equations

$$
y=15\left(4-\frac{27}{(x+3)^{3}}\right) \quad \text { and } \quad \ln (x+3)=\frac{1}{3} t, x>-3 .
$$

Find the value of $\frac{d y}{d t}$, when $x=9$.

$$
\square, \frac{d y}{d t}=\frac{15}{64}
$$

Created by T. Madas

Question 12 (***+)
Two variables x and y are related by

$$
y=\frac{1}{4} \pi x^{2}(4-x) .
$$

The variable y is changing with time t, at the constant rate of 0.2 , in suitable units.
Find the rate at which x is changing with respect to t, when $x=2$.

$$
\frac{1}{5 \pi} \approx 0.0637
$$

Question 13 (***+)

The variables y, x and t are related by the equations

$$
y=10 \mathrm{e}^{\frac{1}{5} x-1} \text { and } x=\sqrt{6 t+1}, t \geq 0 .
$$

Find the value of $\frac{d y}{d t}$, when $t=4$.

$$
\square,\left.\frac{d y}{d t}\right|_{t=4}=\frac{6}{5}
$$

Created by T. Madas

Question 14 (****)

Liquid is pouring into a container at the constant rate of $30 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
The container is initially empty and when the height of the liquid in the container is $h \mathrm{~cm}$ the volume of the liquid, $V \mathrm{~cm}^{3}$, is given by

$$
V=36 h^{2} .
$$

a) Find the rate at which the height of the liquid in the container is rising when the height of the liquid reaches 3 cm .
b) Determine the rate at which the height of the liquid in the container is rising 12.5 minutes after the liquid started pouring in.

$$
\square, \frac{5}{36}=0.139 \mathrm{~cm} \mathrm{~s}^{-1}, \frac{1}{60}=0.0167 \mathrm{~cm} \mathrm{~s}^{-1}
$$

