Question 13 (***)

The curve C has equation

$$2\cos 3x\sin y = 1, \ 0 \le x, y \le \pi.$$

a) Show that

$$\frac{dy}{dx} = 3\tan 3x \tan y \,.$$

The point $P\left(\frac{\pi}{12}, \frac{\pi}{4}\right)$ lies on C.

b) Show that an equation of the tangent to C at P is

$$y = 3x$$
.

proof

(0) 20053×504y = 1 DiQFW, t+ a	56)	$\frac{\partial u}{\partial \Omega} = \frac{3}{2} \tan(3\pi E) \tan E = 3$
\Rightarrow $\frac{1}{2} = \frac{1}{2} = $	> >)	40066 y-y,=m(2-2) 3-其=3(2-天) 3-英=32-天
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l}$	}	y = 3x

Question 14 (***)

A curve has equation

$$3x^2 - xy + y^2 + 2x - 4y = 1.$$

a) Show clearly that

$$\frac{dy}{dx} = \frac{2+6x-y}{4-2y+x} \,.$$

b) Hence show further that the value of *x* at the stationary points of the curve satisfies the equation

$$x^2 = \frac{5}{33}.$$

proof

(c) $3a^2 - ay + y^2 + 2a - 4y = 1$	
Diffurta	
$\Rightarrow G_{2} - [xy] - \alpha x \frac{G_{2}}{32} + 2y \frac{G_{2}}{32} + 2 - 4 \frac{G_{2}}{32} = 0$	
⇒ 62-9+2=2%-29焼+4盤=0	
$\Rightarrow \frac{1}{2} $	
at ara-23 to 240000	
(b) T. P. ⇒ G = D = B = P. T. (b)	3-3-4(00)=1
$\Rightarrow \boxed{q = 6x + 2} \qquad \Rightarrow \exists t^2 - 6x^2 - 2x^2 + 36x^2 + 36$	4+4+2x -342-8=(
$=3330^{k} = 5$	
- 1 - 33	

Question 39 (****)

The equation of a curve is given implicitly by

$$4y + y^2 e^{3x} = x^3 + C ,$$

where C is a non zero constant.

a) Find a simplified expression for $\frac{dy}{dx}$.

The point P(1,k), where k > 0, is a stationary point of the curve.

b) Find an exact value for C.

Question 40 (****)

A curve C has implicit equation

$$y = \frac{2x+1}{xy+3}.$$

- **a**) Find an expression for $\frac{dy}{dx}$, in terms of x and y.
- **b**) Show that there is **no** point on C, where the tangent is parallel to the y axis.

	dy	$\frac{2-y^2}{2-y^2}$
,	dx	2xy+3

$\begin{array}{l} (\Theta) \underline{G} = \frac{22k+1}{2Q+3} \\ \Rightarrow 2Q + \frac{3}{2Q+3} = 22k+1 \\ \Rightarrow 2Q + \frac{3}{2Q} = 22k+1 \\ \Rightarrow 2Q + \frac{3}{2Q} + \frac{3}{2Q} = 22k+1 \\ \Rightarrow \frac{1}{2Q} + \frac{1}{2Q} + \frac{3}{2Q} + \frac{3}{2Q} = 2k+1 \\ \Rightarrow \frac{1}{2Q} + \frac{1}{2Q} + \frac{3}{2Q} + \frac{3}{2Q} = 2k+1 \\ \Rightarrow \frac{1}{2Q} + \frac{1}{2Q} + \frac{3}{2Q} + \frac{3}{2Q} = 2k+1 \\ \Rightarrow \frac{1}{2Q} + \frac{1}{2Q} + \frac{3}{2Q} + \frac{3}{2Q}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
1.1.1	$\rightarrow 0 = 84 + 42 + 9$ $\uparrow^{2} - 4ac$
	= 16-4×8×9 = 16-4×8×0
	ELENTIAL ANTAN OU A

Question 49 (****)

The equation of a curve is given implicitly by

$$y^2 - x^2 = 1$$
, $|y| \ge 1$.

Show clearly that

$$\frac{d^2y}{dx^2} = \frac{y^2 - x^2}{y^3}.$$

proof

$ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \end{array}} \\ \underbrace{ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \end{array}} \\ \underbrace{ \end{array}} \\ \end{array}} \\ \end{array} \\ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \end{array}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \end{array}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \begin{array}{c} \underbrace{ \end{array}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \end{array} \\ \begin{array}{c} \underbrace{ \end{array} \end{array} \\ $	$\begin{cases} \Rightarrow g \frac{dx_q}{dx_1} = 1 - \left(\frac{dy_1}{dx_1}\right)^2 \end{cases}$
$\Rightarrow 2y \frac{dy}{dx} - 2x = 0$ $\Rightarrow \begin{bmatrix} y \frac{dy}{dx} - x = 0 \end{bmatrix}$ Before but assure	$= 3\frac{q_1}{q_2} = (-\frac{3}{2})$
$\Rightarrow \frac{d}{dx} \left[y \frac{dy}{dx} \right] - \frac{d}{dx} \left[x \right] = \frac{d}{dx} \left[y \right]$	$\begin{cases} =y y_1 \frac{d^2y}{dy_2} = \frac{y^2 - y^2}{y^2} \end{cases}$
$ = \frac{\partial y}{\partial t} \times \frac{\partial y}{\partial t} + \frac{y}{\partial t} = 0 $ $ = \frac{\partial y}{\partial t} + \frac{y}{\partial t} = 0 $	$=\frac{\partial^2 y}{\partial \lambda^2} = \frac{\partial^2 - \lambda^2}{y^3} / \frac{\partial^2 y}{\partial \lambda^2}$
and a second sec	(Horacle)

Question 4 (**+)

The binomial expression $(1+x)^{\frac{1}{3}}$ is to be expanded as an infinite convergent series, in ascending powers of x.

- a) Determine the expansion of $(1+x)^{\frac{1}{3}}$, up and including the term in x^3 .
- **b**) Use the expansion of part (**a**) to find the expansion of $(1-3x)^{\frac{1}{3}}$, up and including the term in x^3 .
- c) Use the expansion of part (a) to find the expansion of $(27 27x)^{\frac{1}{3}}$, up and including the term in x^3 .

$$\boxed{1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 + O\left(x^4\right)}, \ 1 - x - x^2 - \frac{5}{3}x^3 + O\left(x^4\right)},$$
$$\boxed{3 - x - \frac{1}{3}x^2 - \frac{5}{27}x^3 + O\left(x^4\right)}$$

$$\begin{array}{l} \textbf{(g)} & (i+2)^{\frac{1}{2}} = i + \frac{1}{2} \frac{(g_1)}{(g_1)} + \frac{(g_2)}{(g_1)} + \frac{(g_1)}{(g_1)} + \frac{(g_1)}{(g_1)} \\ & = i + \frac{1}{2} \alpha_{-1} \frac{1}{g_1 \alpha_{-1}} + \frac{1}{g_1 \alpha_{-1}} \frac{1}{g_1 \alpha_{-1}} \\ \textbf{(g)} & = i - \alpha_{-1} \alpha_{-1}$$

Question 5 (**+)

$$f(x) = \frac{5x+3}{(1-x)(1+3x)}, \ |x| < \frac{1}{3}.$$

- a) Express f(x) into partial fractions.
- **b**) Hence find the series expansion of f(x), up and including the term in x^3 .

Question 6 (**+)

$$f(x) = \frac{2x}{(1+2x)^3}, x \neq -\frac{1}{2}.$$

- a) Find the first 4 terms in the series expansion of f(x).
- **b**) State the range of values of x for which the expansion of f(x) is valid.

$$f(x) = 2x - 12x^{2} + 48x^{3} - 160x^{4} + O(x^{5}), \quad -\frac{1}{2} < x < \frac{1}{2}$$

VAUD For |2x| < 1 $|x| < \frac{1}{2}$ If $-\frac{1}{2} < x < \frac{1}{2}$

Question 11 (***)

$$y = \sqrt{4 - 12x}, -\frac{1}{3} < x < \frac{1}{3}.$$

- a) Find the binomial expansion of y in ascending powers of x up and including the term in x^3 , writing all coefficients in their simplest form.
- **b)** Hence find the coefficient of x^2 in the expansion of

$$(12x-4)(4-12x)^{\frac{1}{2}} .$$

$$(12x-4)(4-12x)^{\frac{1}{2}} .$$

$$(3) \quad y = 2-3x - \frac{9}{4}x^2 - \frac{27}{8}x^3 + O(x^4) , \quad -27$$

$$(4) \quad y = 2^{-3x} - \frac{9}{4}x^2 - \frac{27}{8}x^3 + O(x^4) , \quad -27$$

$$\begin{array}{l} (\mathbf{a}) & \int_{1}^{n} = \sqrt{4} - 12\mathbf{a} \quad \left[\frac{2}{4} - 12\mathbf{a} \right]^{2} = \left[\frac{4}{4} - 12\mathbf{a} \right]^{2} = \frac{4}{4} \left(1 - 2\mathbf{a} \right)^{2} = \frac{2}{4} \left(-2\mathbf{a} \right)^{2$$

Question 12 (***)

The binomial $(1+x)^{-\frac{1}{2}}$ is to be expanded as an infinite convergent series, in ascending powers of x.

a) Find the series expansion of $(1+x)^{-\frac{1}{2}}$ up and including the term in x^3 .

- **b)** Use the expansion of part (a) to find the expansion of $\frac{1}{\sqrt{1+2x}}$, up and including the term in x^3 .
- c) State the range of values of x for which the expansion of $\frac{1}{\sqrt{1+2x}}$ is valid.
- **d**) Use the expansion of $\frac{1}{\sqrt{1+2x}}$ with x = -0.1 to show that $\sqrt{5} \approx 2.235$.

$$\boxed{1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + O\left(x^4\right)}, \quad \boxed{1 - x + \frac{3}{2}x^2 - \frac{5}{2}x^3 + O\left(x^4\right)}, \quad \boxed{-\frac{1}{2} < x < \frac{1}{2}}$$

Question 13 (***)

$$f(x) = \sqrt{1-2x}, \quad |x| < \frac{1}{2}.$$

- a) Expand f(x) as an infinite series, up and including the term in x^3 .
- **b**) By substituting x = 0.01 in the expansion, show that $\sqrt{2} \approx 1.414214$.

$$f(x) = 1 - x - \frac{1}{2}x^2 - \frac{1}{2}x^3 + O(x^4)$$

(a)	$-\frac{1}{2}(\lambda) = \sqrt{1-2a}^{2} = (1-2a)^{2} = 1 + \frac{a}{1}(-2a)^{2} + \frac{1}{1\times2}(-2a)^{2} + \frac{(b)(\frac{1}{2})(\frac{1}{2})}{1\times2\times3}(-2a)^{4} + \frac{(b)(\frac{1}{2})(\frac{1}{2})(\frac{1}{2})}{1\times2\times3}(-2a)^{4} + \frac{(b)(\frac{1}{2})$
	$= 1 - x - \frac{1}{2}x^2 - \frac{1}{2}x^3 + O(2^6)$
6	(ET 3500)
	$\left[1 - 2x0.01\right] \approx 1 = 0.01 - \frac{1}{2}(0.01)^2 - \frac{1}{2}(0.01)^3$
	2000000 - 200000 - 10-0-1 ~ 89-0
	$\sqrt{\frac{48}{100}} \simeq 0.9839495.$
	$\frac{\sqrt{96^{-1}}}{10} \simeq 0.9899495$
	10 0.9669495
	N2 ~ 1.44214

Question 4 (**+)

The figure above shows the curve C, given parametrically by

$$x = t^3 + 3$$
, $y = \frac{2}{3t}$, $t > 0$.

The finite region R is bounded by C, the x axis and the straight lines with equations x = 4 and x = 11.

a) Show that the area of R is 3 square units.

The region R is revolved in the x axis by 2π radians to form a solid of revolution S.

b) Find the volume of *S*.

$$\begin{array}{c} (\mathfrak{Q}) & \downarrow_{i_{1}} \\ &$$

Question 5 (***)

The figure above shows the curve C, given parametrically by

$$x = 6t^2$$
, $y = t - t^2$, $t \ge 0$.

The curve meets the x axis at the origin O and at the point P.

a) Show that the x coordinate of P is 6.

The finite region R, bounded by C and the x axis, is revolved in the x axis by 2π radians to form a solid of revolution, whose volume is denoted by V.

b) Show clearly that

$$V = \pi \int_0^T 12t \left(t - t^2\right)^2 dt ,$$

stating the value of T.

c) Hence find the value of V.

Created by T. Madas

Question 11 (***+)

The figure above shows a curve known as a re-entrant cycloid, with parametric equations

 $x = \theta - 4\sin\theta$, $y = 1 - 2\cos\theta$, $0 \le \theta \le 2\pi$.

The curve crosses the x axis at the points P and Q.

- **a**) Find the value of θ at the points *P* and *Q*.
- **b**) Show that the area of the finite region bounded by the curve and the *x* axis, shown shaded in the figure above, is given by the integral

$$\int_{\theta_1}^{\theta_2} 1 - 6\cos\theta + 8\cos^2\theta \ d\theta,$$

where θ_1 and θ_2 must be stated.

c) Find an exact value for the above integral.

$$\theta = \frac{\pi}{3}, \frac{5\pi}{3}, \theta_1 = \frac{\pi}{3}, \theta_2 = \frac{5\pi}{3}, \theta_2 = \frac{5\pi}{3}$$

(a) The found
$$\lambda$$
 instruction of the set of

The figure above shows the curve C, with parametric equations

$$x = t^2$$
, $y = 1 + \cos t$, $0 \le t \le 2\pi$.

The curve meets the coordinate axes at the points A and B.

a) Show that the area of the shaded region bounded by *C* and the coordinate axes is given by the integral

$$\int_{t_1}^{t_2} 2t \left(1 + \cos t\right) dt,$$

where t_1 and t_2 are constants to be stated.

b) Evaluate the above parametric integral to find an exact value for the area of the shaded region.

 $area = \pi^2 - 4$ $t_1 = 0, t_2 = \pi$

Question 16 (****)

The figure above shows the curve C, with parametric equations

$$x = 4\cos\theta$$
, $y = \sin\theta$, $0 \le \theta \le \frac{\pi}{2}$.

The curve meets the coordinate axes at the points A and B. The straight line with equation $y = \frac{1}{2}$ meets C at the point P.

a) Show that the area under the arc of the curve between A and P, and the x axis, is given by the integral

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} 4\sin^2\theta \ d\theta.$$

The shaded region R is bounded by C, the straight line with equation $y = \frac{1}{2}$ and the y axis.

b) Find an exact value for the area of R.

Created by T. Madas

Question 12 (***)

A curve C is given parametrically by

$$x = 4t - 1, y = \frac{5}{2t} + 10, t \in \mathbb{R}, t \neq 0.$$

The curve C crosses the x axis at the point A.

- **a**) Find the coordinates of *A*.
- **b**) Show that an equation of the tangent to C at A is

$$10x + y + 20 = 0$$
.

c) Determine a Cartesian equation for C.

$$\boxed{(-2,0)}, (x+1)(y-10) = 10 \quad \text{or} \quad y = \frac{10(x+2)}{x+1}$$

Question 13 (***)

A curve C is given parametrically by

$$x = 3t - 1, y = \frac{1}{t}, t \in \mathbb{R}, t \neq 0.$$

Show that an equation of the normal to C at the point where C crosses the y axis is

$$y = \frac{1}{3}x + 3.$$

proof

$\begin{array}{ll} \mathcal{X} \circ \ \mathcal{3} t^{-1} \\ \mathcal{Y} = \ \frac{1}{t} = t^{-1} \end{array} \right\} \mathcal{X} \circ \mathcal{O} \implies \end{array}$	C = 34 - 1 $f = \frac{1}{3}$ 44xCt-	y ≈ <u>1</u> =3 ÷. (o ₍ s) -
$d_{24} = \frac{d_{24}/dt}{d_{24}/dt} = -\frac{t^2}{3} = -\frac{1}{3}$	$\frac{1}{3t^{2}}$ $\frac{1}{(1)^{2}} = -\frac{1}{16} = -3$	NORMAL CARINS 1
(0,1) 1t=5 €puttion of NORMAC ⇒)	1) (3 1)-1)=2+(2-20) 1)-3=2-(2-20) 1)-3=2-2	s .: y==10+3//
	2 3-3/	BAPURIO

Question 24 (***+)

A curve C is defined by the parametric equations

$$x = \cos t$$
, $y = \cos 2t$, $0 \le t \le \pi$.

- **a**) Find $\frac{dy}{dx}$ in its simplest form.
- **b**) Find a Cartesian equation for C.
- c) Sketch the graph of C.

The sketch must include

- the coordinates of the endpoints of the graph.
- the coordinates of any points where the graph meets the coordinates axes.

$$\frac{dy}{dx} = 4\cos t \ , \ y = 2x^2 - 1 \ , \ (-1,1)(1,1), (0,-1), \left(-\frac{\sqrt{2}}{2},0\right)\left(\frac{\sqrt{2}}{2},0\right)$$

Question 25 (***+)

A curve C is given by the parametric equations

$$x = \frac{3t-2}{t-1}, y = \frac{t^2 - 2t + 2}{t-1}, t \in \mathbb{R}, t \neq 1.$$

a) Show clearly that

$$\frac{dy}{dx} = 2t - t^2.$$

The point $P(1, -\frac{5}{2})$ lies on C.

b) Show that the equation of the tangent to C at the point P is

$$3x - 4y - 13 = 0$$
.

proof

(a) $Q = \frac{3t-2}{t-1}$	=) $\frac{dx}{dt} = \frac{3(\underline{t}-1)-1(3\underline{t}-2)}{(\underline{t}-1)^2} = \frac{-1}{(\underline{t}-1)^2}$ du $(\underline{t}-1)(2\underline{t}-2) = ((\underline{t}-1)^2)$
g = t-i	$= \int \frac{dt}{dt} = \frac{(t-1)^{2}}{(t-1)^{2}} = \frac{(t-1)^{2}}{(t-1)^{2}}$
$\frac{dq}{d\lambda} = \frac{dq/4t}{d\lambda/4t} =$	$\frac{\frac{t-2\pi}{t-1}}{\frac{\pi}{t-1}} = \frac{\frac{t-2t}{-1}}{\frac{\pi}{t-1}} = 2t - \frac{1}{t-2}$ $\frac{t}{2} \frac{t}{2} $
t-($\begin{array}{c c} \hline \hline$
$\left. \frac{\partial u}{\partial D} \right _{t=\frac{1}{2}} = 2(\frac{1}{2})$	$-(\frac{1}{2})^{k} = 1 - \frac{1}{4} = \frac{1}{4}$ 0 = 3k - 4y - 13 As itequice 0

Question 49 (****)

A curve C is given by the parametric equations

$$x = \sec \theta$$
, $y = \ln(1 + \cos 2\theta)$, $0 \le \theta < \frac{\pi}{2}$.

a) Show clearly that

$$\frac{dy}{dx} = -2\cos\theta.$$

The straight line L is a tangent to C at the point where $\theta = \frac{\pi}{3}$.

- **b**) Find an equation for *L*, giving the answer in the form y + x = k, where *k* is an exact constant to be found.
- c) Show that a Cartesian equation of *C* is

$$x^2 e^y = 2.$$

 $y + x = 2 - \ln 2$

Carry out the following integrations:

1. $\int \frac{1}{2} x e^{4x} dx = \frac{1}{8} x e^{4x} - \frac{1}{32} e^{4x} + C$ 2. $\int 5x\sin 4x \, dx = -\frac{5}{4}x\cos 4x + \frac{5}{16}\sin 4x + C$ 3. $\int (2x+1)\cos 2x \, dx = \frac{1}{2}(2x+1)\sin 2x + \frac{1}{2}\cos 2x + C$ 4. $\int -3x\cos 4x \, dx = -\frac{3}{4}x\sin 4x - \frac{3}{16}\cos 4x + C$ 5. $\int x^2 e^{-2x} dx = -\frac{1}{2}x^2 e^{-2x} - \frac{1}{2}x e^{-2x} - \frac{1}{4}e^{-2x} + C$ 6. $\int x^2 \sin 5x \, dx = -\frac{1}{5}x^2 \cos 5x + \frac{2}{25}x \sin 5x + \frac{2}{125}\cos 5x + C$ 7. $\int x^2 \cos \frac{1}{3} x \, dx = 3x^2 \sin \frac{1}{3} x + 18x \cos \frac{1}{3} x - 54 \sin \frac{1}{3} x + C$ 8. $\int \frac{1}{2} x^3 \ln x \, dx = \frac{1}{8} x^4 \ln x - \frac{1}{32} x^4 + C$ 9. $\int x \ln 3x \, dx = \frac{1}{2} x^2 \ln 3x - \frac{1}{4} x^2 + C$ 10. $\int \frac{\ln x}{x^3} dx = -\frac{\ln x}{2x^2} - \frac{1}{4x^2} + C$

$$f(x) \equiv 9\sin x + 12\cos x, \ x \in \mathbb{R}.$$

a) Express f(x) in the form $R\sin(x+\alpha)$, R > 0, $0 < \alpha < \frac{\pi}{2}$.

b) Hence, solve the trigonometric equation

 $9\sin x + 12\cos x = 7.5$, $0 < x < 2\pi$.

 $f(x) \equiv 9\sin x + 12\cos x \cong 15\sin(x + 0.927^{\circ})$, $x \approx 1.69^{\circ}$, 5.88°

$$f(\theta) \equiv 4\sin\theta + 3\cos\theta, \ \theta \in \mathbb{R}.$$

- a) Write the above expression in the form $R\sin(\theta + \alpha)$, R > 0, $0 < \alpha < 90^{\circ}$.
- **b**) Write down the maximum value of $f(\theta)$.
- c) Find the smallest positive value of θ for which this maximum value occurs.

 $f(\theta) = 4\sin\theta + 3\cos\theta \approx 5\sin(\theta + 36.9^{\circ}), \ f(\theta)_{\max} = 5, \ \theta \approx 53.1^{\circ}$

61	$4_{94}\theta + 3_{605}\theta = R_{9}(\theta + \kappa)$
	= Rougers + xougers = Gool (xn12) + Qual (200)
	$\begin{cases} R_{105x=4} \\ R_{51xx=3} \end{cases} = \sqrt{4^{2} + 3^{2}} = 5$
	time == => ar = 36.87°
	··· 4540+3600 = 554(0+369)
(b)	$(12mb + 3csb \approx 3sm(b + 3cn^{\circ})$
	MAX= S
(4)	GR WAY OF S => SED (0+36-9)=5
	$SD((\theta + 3\xi q)) = 1$
	8+369'= 900
	⊖ = 23.1°
	,

$$f(x) \equiv \sin x - \sqrt{3} \cos x, \ x \in \mathbb{R}.$$

a) Express
$$f(x)$$
 in the form $R\sin(x-\alpha)$, $R > 0$, $0 < \alpha < \frac{\pi}{2}$.

- **b**) Write down the maximum value of f(x).
- c) Find the smallest positive value of x for which this maximum value occurs.

$$f(x) \equiv \sin x - \sqrt{3} \cos x \equiv 2 \sin \left(x - \frac{\pi}{3}\right), \quad \boxed{f(x)_{\max} = 2}, \quad \boxed{x = \frac{5\pi}{6}}$$

6)	SM2-13tora = Rsin(2-x) = Damator - Rocasina = (Down)sm2 - (Damatora
	$\begin{cases} R_{000x} = 1 \\ 2Nm\alpha = 13 \\ \bullet tom_{x} = N_{1}^{2} \\ \cdot tom_{x} = N_{1}^{2} \\ \cdot tom_{x} = N_{1}^{2} \\ \cdot \alpha = \frac{1}{3} \end{cases} = 2$
	-House = and -F)
6)	SMR-KS LOSE = 2 SM() < between -1 & 1 HWGE MAX US 2
ଜ	For max of 2, $S^{(m)}(2, \frac{\pi}{2}) = 1$ $\alpha - \frac{\pi}{2} = \frac{\pi}{2}$ $\alpha = \frac{3\pi}{6}$

$$f(x) \equiv 3\sin x + \cos x, \ x \in \mathbb{R}$$

a) Express f(x) in the form $R\cos(x-\alpha)$, R > 0, $0 < \alpha < \frac{\pi}{2}$.

b) Solve the equation

$$f(x) = 2 \text{ for } 0 < x < 2\pi.$$

- c) Write down the minimum value of f(x).
- d) Find the smallest positive value of x for which this minimum value occurs.

$$f(x) \approx \sqrt{10} \cos(x - 1.249^{\circ})$$
, $x = 0.363^{\circ}, 2.135^{\circ}$, $f(x)_{\min} = -\sqrt{10}$, $x = 4.391^{\circ}$

$$f(x) \equiv 2\sin x + 2\cos x, \ x \in \mathbb{R}.$$

a) Express f(x) in the form $R\sin(x+\alpha)$, R > 0, $0 < \alpha < \frac{\pi}{2}$.

b) State the minimum and the maximum value of ...

i. ...
$$y = f\left(x - \frac{\pi}{2}\right)$$
.
ii. ... $y = 2f(x) + 1$.
iii. ... $y = [f(x)]^2$.
iv. ... $y = \frac{10}{f(x) + 3\sqrt{2}}$.

$$f(x) \equiv \sqrt{8}\sin\left(x + \frac{\pi}{4}\right), \quad \left[-\sqrt{8}, \sqrt{8}\right], \quad \left[-2\sqrt{8} + 1, 2\sqrt{8} + 1\right], \quad \left[0, 8\right], \quad \left[\sqrt{2}, 5\sqrt{2}\right]$$

Question 7 (***)

$$x = 4\sin\theta + 7\cos\theta.$$

The value of θ is increasing at the constant rate of 0.5, in suitable units.

Find the rate at which x is changing, when $\theta = \frac{\pi}{2}$.

$ = \frac{\theta_{2\omega}\Gamma + \theta_{n2}F = E \bullet}{2^{\circ} \sigma = \frac{\theta_{0}}{\theta} \bullet} $	da = trad - TSmb
$ \begin{array}{l} \Rightarrow \frac{\partial G}{\partial x} = (\gamma_{exy})^{-1} \\ \Rightarrow \frac{\partial G}{\partial x} = \frac{\partial G}{\partial x} \\ \Rightarrow \frac{\partial G}{\partial x} = \frac{\partial G}{\partial x} \\ \Rightarrow \frac{\partial G}{\partial x} = \frac{\partial G}{\partial x} \\ \Rightarrow \frac{\partial G}{\partial $	$\begin{cases} \frac{d1}{dt} = 2\omega\theta - \frac{1}{L}\omega_{H}\theta \\ \frac{d\lambda}{dt} = 2\omega\theta - \frac{1}{L}\omega_{H}\theta \\ \frac{d\lambda}{dt} = 2\omega\theta - \frac{1}{L}\omega_{L} \\ \frac{d\lambda}{dt} = -\frac{1}{L} \end{cases}$

Question 8 (***)

Fine sand is dropping on a horizontal floor at the constant rate of 4 cm³s⁻¹ and forms a pile whose volume, V cm³, and height, h cm, are connected by the formula

$$V = -8 + \sqrt{h^4 + 64} \; .$$

Find the rate at which the height of the pile is increasing, when the height of the pile has reached 2 cm.

Question 9 (***)

An oil spillage on the surface of the sea remains circular at all times.

The radius of the spillage, r km, is increasing at the constant rate of 0.5 km h⁻¹.

a) Find the rate at which the area of the spillage, A km², is increasing, when the circle's radius has reached 10 km.

A different oil spillage on the surface of the sea also remains circular at all times.

The area of this spillage, $A \text{ km}^2$, is increasing at the rate of 0.5 km² h⁻¹.

b) Show that when the area of the spillage has reached 10 km^2 , the rate at which the radius r of the spillage is increasing is

$$\frac{1}{4\sqrt{10\pi}}\,\mathrm{km}\,\mathrm{h}^{-1}.$$

 $10\pi \approx 31.4 \text{ km}^2 \text{ h}^{-1}$

Question 10 (***)

Liquid dye is poured onto a large flat cloth and forms a circular stain, the area of which grows at a steady rate of $1.5 \text{ cm}^2 \text{s}^{-1}$.

Calculate, correct to three significant figures, ...

- a) ... the radius, in cm, of the stain 4 seconds after it started forming.
- **b**) ... the rate, in cms^{-1} , of increase of the radius of the stain after 4 seconds.

Question 11 (***)

The variables y, x and t are related by the equations

$$y = 15\left(4 - \frac{27}{(x+3)^3}\right)$$
 and $\ln(x+3) = \frac{1}{3}t, x > -3.$

Find the value of $\frac{dy}{dt}$, when x = 9.

	dy	_ 15
,	dt	64

$\frac{dy}{dt} = \frac{dy}{dt} - \frac{dy}{dt},$ $\frac{dy}{dt} = \frac{dy}{dt} - \frac{dy}{dt},$ $\frac{dy}{dt} = \frac{dy}{dt},$ $\frac{dy}{dt} = \frac{dy}{dt},$	$ \begin{array}{ c c c c c } \hline \bullet & \underbrace{d}_{ij} = 15 \left(4 - 27 (\underline{\zeta}_{34} \underline{s}_{j}^{34}) \\ \hline & \underbrace{dg}_{ik} = 15 \left(8 ((2+\underline{s}_{j})^{44}) = \underbrace{1215}_{(\underline{\zeta}_{4}+\underline{s}_{j})^{44}} \\ \bullet & \underbrace{t}_{i} = 3 \ln(\underline{\zeta}_{4+\underline{s}_{j}}) \\ \hline & \underbrace{dg}_{ij} = \frac{3}{24\cdot\underline{s}_{i}} \end{array} $
$\frac{du}{dE}\Big _{\chi \in Q} = \frac{4\omega}{1728} = \frac{15}{54}$	1

Question 12 (***+)

Two variables x and y are related by

$$y = \frac{1}{4}\pi x^2 \left(4 - x\right).$$

The variable y is changing with time t, at the constant rate of 0.2, in suitable units.

Find the rate at which x is changing with respect to t, when x = 2.

1	≈ 0.0637
5π	

$d_{abc} = 0.2$ (Givisi)	$4 = \frac{1}{2}\pi x^{2}(4-x)$
$\frac{dx}{dt} = \frac{dx}{dt} \times \frac{dy}{dt}$	$\mathcal{Y} = \mathbb{T}\left(\chi^2 - \frac{1}{4}\chi^3\right)$
$\frac{dx}{dt} = \frac{4}{\pi (8x - 3A)} \times 0.2$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pi \left(2x - \frac{g}{4}x^2\right)$
$\frac{da_{i}}{dt} = \frac{4}{5\pi\omega(8-3x)}$	$\frac{dx}{dy} = \frac{1}{\pi(2x - \frac{3}{2}a^2)}$
$\frac{dx}{dt} = \frac{4}{Sty2x2} = \frac{1}{Sty}$	$\frac{dx}{dy} = \frac{4}{\pi(\theta_2 - 3x^2)}$
100 (as 0.0637)	

Question 13 (***+)

The variables y, x and t are related by the equations

$$y = 10e^{\frac{1}{5}x-1}$$
 and $x = \sqrt{6t+1}$, $t \ge 0$.

Find the value of $\frac{dy}{dt}$, when t = 4.

$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	(= ((++1)) ¹ /2 {
$\frac{dy}{dt} = 2e^{\frac{1}{2}\alpha - 1} \times 3(dt + 1)^{\frac{1}{2}}$	$\begin{cases} \frac{dx}{dt} = 3(6ts)^{\frac{1}{2}} \\ 0 = 10e^{\frac{1}{2}-1} \end{cases}$
$\frac{du}{dt} = \frac{6e^{\frac{1}{2}\alpha-1}}{\sqrt{6t+1}}$	$\frac{dy}{dx} = 2e^{\frac{1}{x}x-1}$
$\frac{du}{dt} = \frac{6\pi^{\frac{3}{2}}(2+t)^{2}-1}{866t(1-t)}$	
at tat	

Question 14 (****)

Liquid is pouring into a container at the constant rate of $30 \text{ cm}^3 \text{s}^{-1}$.

The container is initially empty and when the height of the liquid in the container is h cm the volume of the liquid, V cm³, is given by

$$V = 36h^2$$
.

- a) Find the rate at which the height of the liquid in the container is rising when the height of the liquid reaches 3 cm.
- b) Determine the rate at which the height of the liquid in the container is rising 12.5 minutes after the liquid started pouring in.

