A1 Doubles Tracking Test 5 Part A

(50 marks: 60 minutes)

1. The function $f(x)$ is given by $f(x)=5 \cos x+12 \sin x$
(a) Write $f(x)$ in the form $f(x)=R \cos (x-\alpha)$, where $0 \leq \alpha \leq 90^{\circ}$ to 4s.f.
(b) For $0 \leq x \leq 360^{\circ}$ solve the equation $5 \cos 2 x+12 \sin 2 x=9$, giving your answers to 1 decimal place.
(4 marks)
(c) $\quad g(\theta)=\frac{20}{23-5 \cos \theta-12 \sin \theta}$

Find the minimum value of $g(\theta)$, and find the value of θ closest to zero that gives this minimum value.
2. (a) Use binomial expansions to show that $\sqrt{\frac{1+3 x}{1-x}} \approx 1+2 x+2 x^{3}$.
(6 marks)
A student attempts to use this expansion to find an approximation for $\sqrt{5}$. The first few steps of the student's working are shown below.

$$
\begin{gathered}
\frac{1+3 x}{1-x}=5 \\
1+3 x=5-5 x \\
x=\frac{1}{2}
\end{gathered}
$$

Substitute $x=\frac{1}{2}$ into expansion
(b) Explain the error in the student's working.
(c) Three other students decide to approximate $\sqrt{5}$ by using either $x=\frac{1}{5}, x=\frac{1}{6}, x=\frac{1}{17}$.

Without approximating $\sqrt{5}$, which of these substitutions
i) is not suitable for an approximation to $\sqrt{5}$?
ii) gives the best approximation to $\sqrt{5}$?

You must explain your reasoning.
3. Solve the inequality $|2 x-5|<\frac{1}{2}|x|+1$
4. Find the exact value of

$$
\begin{equation*}
\int_{\frac{1}{2}}^{2} 6 x \ln 4 x d x \tag{5marks}
\end{equation*}
$$

5. A spherical balloon is inflated by a pump at a rate of $12 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate of increase of the surface area of the balloon when the radius is 8 cm .
(The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$ and the surface area $S=4 \pi r^{2}$)
6. Find the equation of the normal to the curve $3 x^{2} y+y^{3}-2 x=12$ at the point with coordinates $(1,2)$.

Give your answer in the form $a x+b y+c=0$ where a, b and c are integers to be found.
(5 marks)
7.

Figure 4 shows a sketch of part of the curve C with parametric equations

$$
x=3 \theta \sin \theta, \quad y=\sec ^{3} \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}
$$

The point $P(k, 8)$ lies on C, where k is a constant.
(a) Find the exact value of k.

The finite region R, shown shaded in Figure 4, is bounded by the curve C, the y-axis, the x-axis and the line with equation $x=k$.
(b) Show that the area of R can be expressed in the form

$$
\left(\sec ^{2}+\tan \sec ^{2}\right) d
$$

where λ, α and β are constants to be determined.
(c) Hence use integration to find the exact value of the area of R.

Mark Scheme

1a		B1 M1 (may be implied) A1
1b	$\begin{gathered} 13 \cos (2 x-67.38)^{\circ}=9 \\ \cos (2 x-67.38)^{\circ}=\frac{9}{13} \\ (2 x-67.38)^{\circ}=-46.19^{\circ}, 46.19^{\circ}, 313.81^{\circ}, 406.19^{\circ} \\ 2 x=21.19^{\circ}, 113.6^{\circ}, 381.2^{\circ}, 473.6^{\circ} \\ x=10.6^{\circ}, 56.8^{\circ}, 190.6^{\circ}, 236.8^{\circ} \end{gathered}$	M1 (FT (1a)) M1 (4 sols) M1 (halving) A1
1c	$g(\theta)_{\min }=\frac{20}{23+13}=\frac{5}{9}$ $\begin{aligned} \text { at } \cos (\theta-67.38)^{\circ} & =-1 \\ (\theta-67.38)^{\circ} & =\cdots, 180^{\circ}, \ldots \\ \theta & =-112.6^{\circ} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 (}-1 \text { and }-180 \\ & \text { seen }) \\ & \text { A1 } \end{aligned}$

2a	$\begin{aligned} & (1+3 x)^{\frac{1}{2}} \approx 1+\frac{1}{2} x-\frac{9}{8} x^{2}+\frac{81}{48} x^{3}+\cdots \\ & (1-x)^{-\frac{1}{2}} \approx 1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{15}{48} x^{3}+\cdots \end{aligned}$ Multiplying together gives $1+2 x+2 x^{3}$	M1 A1 M1A1 M1 A1
2b	The expansion is valid for $\|x\|<\frac{1}{3}$ and $\frac{1}{2}>\frac{1}{3}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { A1 } \\ & \hline \end{aligned}$
2ci	Using $x=\frac{1}{5}$ would give an approximation of $\sqrt{2}$	B1
2cii	Using $x=\frac{1}{17}$ would give an approximation of $\frac{\sqrt{5}}{2}$ so most suitable	B1

3	$\begin{aligned} -2 x+5 & =\frac{1}{2} x+1 \\ -4 x+10 & =x+2 \\ 8 & =5 x \\ x & =\frac{8}{5} \end{aligned}$ $2 x-5=\frac{1}{2} x+1$ $4 x-10=x+2$ $3 x=12$ $x=4$ $\frac{8}{5}<x<4$	M1 (2 equations) A1 (2 solutions) A1

4	$\int_{\frac{1}{2}}^{2} 6 x \ln 4 x d x$	$u=\ln 4 x \frac{d u}{d x}=\frac{1}{x}$ $v=3 x^{2} \frac{d v}{d x}=6 x$	M1
$=\left[3 x^{2} \ln 4 x\right]-\int_{\frac{1}{2}}^{2} 3 x^{2} \times \frac{1}{x} d x$		M1 A1	
$=\left[3 x^{2} \ln 4 x-\frac{3}{2} x^{2}\right]_{\frac{1}{2}}^{2}$		M1 A1	
$=12 \ln 8-\frac{3}{4} \ln 2-\frac{45}{8}$	A1		

5	$\begin{aligned} & V=\frac{4}{3} \pi r^{3} \quad S=4 \pi r^{2} \quad \frac{d v}{d t}=12 \\ & \frac{d v}{d r}=4 \pi r^{2} \quad \frac{d s}{d r}=8 \pi r \\ & \frac{d s}{d t}=\frac{d s}{d r} \times \frac{d r}{d v} \times \frac{d v}{d t} \\ & =8 \pi r \times \frac{1}{4 \pi r^{2}} \times 12 \\ & =\frac{24}{r} \end{aligned}$ When $r=8 \frac{d s}{d t}=\frac{24}{8}=3 \mathrm{~cm}^{3} s^{-1}$	M1 (differentiate) M1 (chain rule) A1 dM1 (dep on both previous M marks) A1 (must include units)

6	$3 x^{2} \frac{d y}{d x}+6 x y+3 y^{2} \frac{d y}{d x}-2=0$ $(1,2)$ $\frac{d y}{d x}+12+12 \frac{d y}{d x}-2=0$ $15 \frac{d y}{d x}=-10$ $\frac{d y}{d x}$ $=-\frac{2}{3}$	M1 (prod \&chain) A1		
$y-2=\frac{3}{2}(x-1)$				
$2 y-4=3 x-3$				
$3 x-2 y+1=0$			\quad	M1 (using neg
:---				
recip to find st				
line)				

7	$x=3 \theta \sin \theta, \quad y=\sec ^{3} \theta, \quad 0 \leq \theta<\frac{\pi}{2}$	
(a)	$\begin{aligned} & \{\text { When } y=8,\} 8=\sec ^{3} \theta \Rightarrow \cos ^{3} \theta=\frac{1}{8} \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3} \\ & \quad k \text { (or } x)=3\left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right) \end{aligned}$	M1
	so $k($ or $x)=\frac{\sqrt{3} \pi}{2}$	A1
		[2]
(b)	$\frac{\mathrm{d} x}{\mathrm{~d} \theta}=3 \sin \theta+3 \theta \cos \theta$	B1
	$\left\{\int y \frac{\mathrm{~d} x}{\mathrm{~d} \theta}\{\mathrm{~d} \theta\}\right\}=\int\left(\sec ^{3} \theta\right)(3 \sin \theta+3 \theta \cos \theta)\{\mathrm{d} \theta\}$	M1
	$=3 \int \theta \sec ^{2} \theta+\tan \theta \sec ^{2} \theta \mathrm{~d} \theta$	Al *
	$x=0$ and $x=k \Rightarrow \underline{\alpha=0}$ and $\beta=\frac{\pi}{3}$	B1
		[4]
(c)	$\left\{\int \theta \sec ^{2} \theta \mathrm{~d} \theta\right\}=\theta \tan \theta-\int \tan \theta\{\mathrm{d} \theta\}$	M1
	$\begin{aligned} & =\theta \tan \theta-\ln (\sec \theta) \\ & \quad \text { or }=\theta \tan \theta+\ln (\cos \theta) \end{aligned}$	A1
		M1
	or $\frac{1}{2 u^{2}}$ where $u=\cos \theta$ or $\frac{1}{2} u^{2}$ where $u=\tan \theta$	A1
	$\{\operatorname{Area}(R)\}=\left[3 \theta \tan \theta-3 \ln (\sec \theta)+\frac{3}{2} \tan ^{2} \theta\right]_{0}^{\frac{\pi}{3}}$ or $\left[3 \theta \tan \theta-3 \ln (\sec \theta)+\frac{3}{2} \sec ^{2} \theta\right]_{0}^{\frac{\pi}{3}}$	
	$=\left(3\left(\frac{\pi}{3}\right) \sqrt{3}-3 \ln 2+\frac{3}{2}(3)\right)-(0)$ or $\left(3\left(\frac{\pi}{3}\right) \sqrt{3}-3 \ln 2+\frac{3}{2}(4)\right)-\left(\frac{3}{2}\right)$	
	$=\frac{9}{2}+\sqrt{3} \pi-3 \ln 2$ or $\frac{9}{2}+\sqrt{3} \pi+3 \ln \left(\frac{1}{2}\right)$ or $\frac{9}{2}+\sqrt{3} \pi-\ln 8$ or $\ln \left(\frac{1}{8} \mathrm{e}^{\frac{7}{2}+\sqrt{3} \pi}\right)$	$\begin{aligned} & \text { A1 } \\ & \text { o.e. } \end{aligned}$
		[6]
		12

