A1 Doubles Tracking Test 5 Part A

(50 marks: 60 minutes)

- 1. The function f(x) is given by f(x) = 5cosx + 12sinx
 - (a) Write f(x) in the form $f(x) = Rcos(x \alpha)$, where $0 \le \alpha \le 90^\circ$ to 4s.f. (3 marks)
 - (b) For $0 \le x \le 360^\circ$ solve the equation $5\cos 2x + 12\sin 2x = 9$, giving your answers to 1 decimal place. (4 marks)
 - (c) $g(\theta) = \frac{20}{23 5\cos\theta 12\sin\theta}$ Find the minimum value of $g(\theta)$, and find the value of θ closest to zero that gives this minimum value. (3 marks)
- 2. (a) Use binomial expansions to show that $\sqrt{\frac{1+3x}{1-x}} \approx 1 + 2x + 2x^3$. (6 marks)

A student attempts to use this expansion to find an approximation for $\sqrt{5}$. The first few steps of the student's working are shown below.

$$\frac{1+3x}{1-x} = 5$$

$$1+3x = 5-5x$$

$$x = \frac{1}{2}$$
Substitute $x = \frac{1}{2}$ into expansion

- (b) Explain the error in the student's working.
- (c) Three other students decide to approximate $\sqrt{5}$ by using either $x = \frac{1}{5}$, $x = \frac{1}{6}$, $x = \frac{1}{17}$.

Without approximating $\sqrt{5}$, which of these substitutions

- i) is not suitable for an approximation to $\sqrt{5}$?
- ii) gives the best approximation to $\sqrt{5}$?

You must explain your reasoning.

3. Solve the inequality $|2x - 5| < \frac{1}{2}|x| + 1$

(2 marks)

(3 marks)

(2 marks)

4. Find the exact value of

$$\int_{\frac{1}{2}}^{2} 6x \ln 4x dx \qquad (5 \text{ marks})$$

5. A spherical balloon is inflated by a pump at a rate of 12cm³s⁻¹. Find the rate of increase of the surface area of the balloon when the radius is 8cm.

(The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$ and the surface area $S = 4\pi r^2$) (5 marks)

6. Find the equation of the normal to the curve $3x^2y + y^3 - 2x = 12$ at the point with coordinates (1, 2).

Give your answer in the form ax + by + c = 0 where a, b and c are integers to be found.

(5 marks)

Figure 4 shows a sketch of part of the curve C with parametric equations

 $x = 3\theta \sin\theta$, $y = \sec^3\theta$, $0 \le \theta < \frac{\pi}{2}$

The point P(k, 8) lies on C, where k is a constant.

(*a*) Find the exact value of *k*.

The finite region *R*, shown shaded in Figure 4, is bounded by the curve *C*, the *y*-axis, the *x*-axis and the line with equation x = k.

(b) Show that the area of R can be expressed in the form

$$\int \dot{\mathbf{0}}_{a}^{b} (q \sec^{2} q + \tan q \sec^{2} q) \mathrm{d}q$$

where λ , α and β are constants to be determined.

(c) Hence use integration to find the exact value of the area of R.

END OF TEST

(2 marks)

(4 marks)

(6 marks)

Mark Scheme

1a	R=13 $5cosx + 12sinx \equiv 13 \cos(x - \alpha)$ $= 13cos x \cos \alpha + 13sin x \sin \alpha$	B1 M1 (may be implied)
	$13sin\alpha = 12$ $tan \alpha = 2.4$	
	$13\cos\alpha = 5 \qquad \qquad \alpha = 67.38^{\circ} (4s. f.)$	
		A1
1b	$13 \cos(2x - 67.38)^{\circ} = 9$ $\cos(2x - 67.38)^{\circ} = \frac{9}{13}$ $(2x - 67.38)^{\circ} = -46.19^{\circ}, 46.19^{\circ}, 313.81^{\circ}, 406.19^{\circ}$ $2x = 21.19^{\circ}, 113.6^{\circ}, 381.2^{\circ}, 473.6^{\circ}$ $x = 10.6^{\circ}, 56.8^{\circ}, 190.6^{\circ}, 236.8^{\circ}$	M1 (FT (1a)) M1 (4 sols) M1 (halving) A1
1c	$g(\theta)_{min} = \frac{20}{23+13} = \frac{5}{9}$ at $\cos(\theta - 67.38)^{\circ} = -1$ $(\theta - 67.38)^{\circ} = \cdots, 180^{\circ},$ $\theta = -112.6^{\circ}$	B1 M1 (-1 and -180 seen) A1

2a	$(1+3x)^{\frac{1}{2}} \approx 1 + \frac{1}{2}x - \frac{9}{8}x^2 + \frac{81}{48}x^3 + \cdots$	M1 A1
	$(1-x)^{-\frac{1}{2}} \approx 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{15}{48}x^3 + \cdots$	M1A1
	Multiplying together gives $1 + 2x + 2x^3$	M1 A1
2b	The expansion is valid for $ x < \frac{1}{2}$ and $\frac{1}{2} > \frac{1}{2}$	B1
		A1
2ci	Using $x = \frac{1}{5}$ would give an approximation of $\sqrt{2}$	B1
2cii	Using $x = \frac{1}{17}$ would give an approximation of $\frac{\sqrt{5}}{2}$ so most suitable	B1

4	$\int_{\frac{1}{2}}^{2} 6x \ln 4x \ dx$	$u = ln4x \frac{du}{dx} = \frac{1}{x}$	M1
		$v = 3x^2 \ \frac{dv}{dx} = 6x$	
	$= [3x^{2}ln4x] - \int_{\frac{1}{2}}^{2} 3x^{2} \times \frac{1}{x} dx$		M1 A1
	г - 1 ²		M1 A1
	$= \left[3x^2\ln 4x - \frac{5}{2}x^2\right]_{\frac{1}{2}}$		A1
	$= 12ln8 - \frac{3}{4}ln2 - \frac{45}{8}$		
	$= 12ln8 - \frac{3}{4}ln2 - \frac{45}{8}$		

5	$V = \frac{4}{3}\pi r^3 \qquad S = 4\pi r^2 \qquad \frac{dv}{dt} = 12$	
	$\frac{dv}{dr} = 4\pi r^2 \qquad \frac{ds}{dr} = 8\pi r$	M1 (differentiate)
	$\frac{ds}{dt} = \frac{ds}{dr} \times \frac{dr}{dv} \times \frac{dv}{dt}$	M1 (chain rule)
	$=8\pi r\times\frac{1}{4\pi r^2}\times12$	A1
	$=\frac{24}{r}$	
	When $r = 8 \frac{ds}{dt} = \frac{24}{8} = 3cm^3 s^{-1}$	dM1 (dep on both previous M marks) A1 (must include units)

5	$3x^{2} \frac{dy}{dx} + 6xy + 3y^{2} \frac{dy}{dx} - 2 = 0$ (1,2) $3\frac{dy}{dx} + 12 + 12\frac{dy}{dx} - 2 = 0$ $15\frac{dy}{dx} = -10$ $\frac{dy}{dx} = -\frac{2}{3}$ $y - 2 = \frac{3}{2}(x - 1)$	M1(prod &chain) A1 M1 M1 (using neg recip to find st
	$y - 2 = \frac{3}{2}(x - 1)$ 2y - 4 = 3x - 3 3x - 2y + 1 = 0	M1 (using neg recip to find st line) A1

7	$x = 3\theta \sin \theta, \ y = \sec^3 \theta, \ 0 \le \theta < \frac{\pi}{2}$	
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cos^3 \theta = \frac{1}{8} \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$ $k \text{ (or } x) = 3\left(\frac{\pi}{2}\right)\sin\left(\frac{\pi}{2}\right)$	M1
	(3) (3) so k (or x) = $\frac{\sqrt{3}\pi}{2}$	A1
		[2]
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$	В1
	$\left\{\int y \frac{\mathrm{d}x}{\mathrm{d}\theta} \left\{\mathrm{d}\theta\right\}\right\} = \int (\sec^3\theta) (3\sin\theta + 3\theta\cos\theta) \left\{\mathrm{d}\theta\right\}$	M1
	$= 3\int \theta \sec^2 \theta + \tan \theta \sec^2 \theta \mathrm{d}\theta$	A1 *
	$x=0$ and $x=k \implies \underline{\alpha=0}$ and $\underline{\beta=\frac{\pi}{3}}$	B1
		[4]
(c)	$\int \left[A_{\text{sec}}^2 A dA \right] = A_{\text{ten}} A \int \left[\tan A dA \right]$	M1
	$\left(\int \partial s \partial t \partial t \partial t \right) = \partial t a d \partial t - \int t a d \partial t a d \partial t d \partial t$	dM1
	$= \theta \tan \theta - \ln(\sec \theta)$ or $= \theta \tan \theta + \ln(\cos \theta)$	A1
		M1
	$\left\{\int \tan\theta \sec^2\theta d\theta\right\} = \frac{1}{2}\tan^2\theta \text{ or } \frac{1}{2}\sec^2\theta$ or $\frac{1}{2u^2}$ where $u = \cos\theta$ or $\frac{1}{2}u^2$ where $u = \tan\theta$	Al
	$\left\{\operatorname{Area}(R)\right\} = \left[3\theta \tan \theta - 3\ln(\sec \theta) + \frac{3}{2}\tan^2 \theta\right]_0^{\frac{\kappa}{3}} \text{ or } \left[3\theta \tan \theta - 3\ln(\sec \theta) + \frac{3}{2}\sec^2 \theta\right]_0^{\frac{\kappa}{3}}$	
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(3)\right) - (0) \text{ or } \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(4)\right) - \left(\frac{3}{2}\right)$	
	$= \frac{9}{2} + \sqrt{3}\pi - 3\ln 2 \text{or} \frac{9}{2} + \sqrt{3}\pi + 3\ln\left(\frac{1}{2}\right) \text{ or } \frac{9}{2} + \sqrt{3}\pi - \ln 8 \text{or} \ln\left(\frac{1}{8}e^{\frac{3}{2}+\sqrt{3}\pi}\right)$	A1 o.e.
		[6]
		12