A1 Doubles Tracking Test 4 Part A

(36 marks: 44 minutes)

1. The function f has domain $-2 \le x \le 6$ and is linear from (-2, 10) to (2, 0) and from (2, 0) to (6, 4). A sketch of the graph of y = f(x) is shown in Figure 1.

Figure 1

(a) Write down the range of f.

(1)

(b) Find ff(0).

(2)

The function g is defined by

$$g: x \to \frac{4+3x}{5-x}, \qquad x \in \mathbb{R}, \qquad x \neq 5.$$

(c) Find $g^{-1}(x)$.

(3)

(d) Solve the equation gf(x) = 16.

(5)

2.

Figure 2

Figure 2 shows part of the curve with equation y = f(x).

The curve passes through the points P(-1.5, 0) and Q(0, 5) as shown.

On separate diagrams, sketch the curve with equation

(a)
$$y = |f(x)|$$
 (2)

(b)
$$y = f(|x|)$$
 (2)

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.

3. Find the integral

$$\int cosx sin^2 x \ dx \tag{3}$$

4. Prove, from first principles, that the derivative of $\cos 3x$ is $-3\sin 3x$.

You may assume that as
$$h \to 0$$
, $\frac{\sin 3h}{h} \to 3$ and $\frac{\cos 3h - 1}{h} \to 0$

(5)

5.

The figure above shows the graph of the curve with equation

$$y = 1 + \sin 2x$$
, $x \in \mathbb{R}$.

The point *P* lies on the curve where $x = \frac{\pi}{3}$.

Show that the area of the finite region bounded by the curve, the y axis and the straight line segment OP is exactly

(8)

$$\frac{1}{12} \left(2\pi + 9 - \pi \sqrt{3} \right).$$

6. The curve C has equation

$$y = \frac{kx^2 - a}{kx^2 + a},$$

where k and a are non zero constants.

- a) Find a simplified expression for $\frac{dy}{dx}$ in terms of a and k.
- **b)** Hence show that C has a single turning point for all values of a and k, and state its coordinates.

(5)

END OF TEST

Mark Scheme TT4 Part A

1.

(a)	$0 \leqslant f(x) \leqslant 10$	B1	(1)
(b)	ff(0) = f(5), = 3	B1, B1	(2)
(c)	$y = \frac{4+3x}{5-x} \Rightarrow y(5-x) = 4+3x$ $\Rightarrow 5y-4 = xy+3x$		
	$\Rightarrow 5y - 4 = xy + 3x$	M1	
	$\Rightarrow 5y - 4 = x(y+3) \Rightarrow x = \frac{5y - 4}{y+3}$	dM1	
	$g^{-1}(x) = \frac{5x-4}{3+x}$	A1	(3)
(d)	$gf(x) = 16 \Rightarrow f(x) = g^{-1}(16) = 4$ oe	M1 A1	
	$f(x) = 4 \Rightarrow x = 6$	B1	
	$f(x) = 4 \Rightarrow 5 - 2.5x = 4 \Rightarrow x = 0.4$ oe	M1 A1	(5)
			[11]

2.

Question Number	Scheme	Marks
(a)		B1
	(-1.5, 0) and $(0, 5)$	B1
	(-1.5,0) <i>0</i>	(2)
(b)	Shape $(0,5)$	B1 B1
	$ \begin{array}{c} (0,5) \\ \hline 0 \end{array} $	(2)

(a) Note that this appears as M1A1 on EPEN

- B1 Shape (inc cusp) with graph in just quadrants 1 and 2. Do not be overly concerned about relative gradients, but the left hand section of the curve should not bend back beyond the cusp
- B1 This is independent, and for the curve touching the x-axis at (-1.5, 0) and crossing the y-axis at (0.5)

(b) Note that this appears as M1A1 on EPEN

- B1 For a U shaped curve symmetrical about the y- axis
- B1 (0,5) lies on the curve

3.

$\int \cos x (\sin x)^2 dx$ $y = (\sin x)^3$ $\frac{dy}{dx} = 3\cos x (\sin x)^2$	M1 A1
$=\frac{1}{3}sin^3x+c$	A1

4.

Let $f(x) = \cos(3x)$	
$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$	
$=\lim_{h\to 0}\left(\frac{\cos(3x+3h)-\cos(3x)}{h}\right)$	M1
$h \rightarrow 0 \setminus h $ / $(\cos 3x \cos 3h - \sin 3x \sin 3h - \cos 3x)$	A1
$= \lim_{h \to 0} \left(\frac{\cos 3x \cos 3h - \sin 3x \sin 3h - \cos 3x}{h} \right)$	
$= \lim_{h \to 0} \left(\left(\frac{\cos 3h - 1}{h} \right) \cos 3x - \left(\frac{\sin 3h}{h} \right) \sin 3x \right)$	M1
As $h \to 0$, $\left(\frac{\sin 3h}{h}\right) \to 3$ and $\left(\frac{\cos 3h-1}{h}\right) \to 0$,	M1
So the expression in side the limit tends to	
$0x\cos 3x - 3x\sin 3x = -3\sin 3x$ Using the derivative of $\cos (3x)$ is $\cos (3x)$	
Hence the derivative of $\cos(3x)$ is $-3\sin(3x)$	A1

5.

$\int 1 + \sin 2x \ dx = \left[x - \frac{1}{2}\cos 2x\right]_0^{\frac{\pi}{3}}$	M1 A1
$= \left(\frac{\pi}{3} + \frac{1}{4}\right) - \left(-\frac{1}{2}\right)$ $= \frac{\pi}{3} + \frac{3}{4}$	M1 A1
When $x = \frac{\pi}{3}$, $y = \frac{2+\sqrt{3}}{2}$	B1
Area of triangle = $\frac{1}{2} \times \frac{\pi}{3} \times \frac{2+\sqrt{3}}{2} = \frac{2\pi+\sqrt{3}\pi}{12}$	M1
Shaded region = $\frac{\pi}{3} + \frac{3}{4} - \frac{2\pi + \sqrt{3}\pi}{12} = \frac{4\pi + 9 - 2\pi + \sqrt{3}\pi}{12}$	M1
$= \frac{1}{12} (2\pi + 9 - \pi\sqrt{3}) *$	A1

6.

$$y = \frac{kx^2 - a}{kx^2 + a}$$

$$\frac{dy}{dx} = \frac{(kx^2 + a)(2kx) - (kx^2 - a)(2kx)}{(kx^2 + a)^2}$$

$$\frac{dy}{dx} = \frac{4akx}{(kx^2 + a)^2}$$
A1

Turning point where $\frac{dy}{dx} = 0$, therefore $4akx = 0$
So when $x = 0$, $y = \frac{-a}{a} = -1$
Single turning point occurs at $(0, -1)$