Tracking Test 3 Part A

(36 marks: 43 minutes)

$1 \quad f(x)=x^{3}-3 x+2$.
(a) Use the factor theorem to show that $(x+2)$ is a factor of $f(x)$.
(b) Given that $f(x)=(x+2)(x-1)^{2}$,
express $\frac{3 x^{3}+x^{2}-18 x+20}{x^{3}-3 x+2}$ in partial fractions.

2 (a) Prove that

$$
\begin{equation*}
\tan \theta+\cot \theta=2 \operatorname{cosec} 2 \theta, \quad \theta \neq \frac{n \pi}{2}, n \in \mathbb{Z} \tag{4}
\end{equation*}
$$

(b) Given the equation

$$
\tan \theta+\cot \theta=k
$$

has real solutions, find all possible values of k .
Write your answer in set notation.
3. Given that

$$
2 \cos (x+50)^{\circ}=\sin (x+40)^{\circ}
$$

(a) Show, without using a calculator, that

$$
\begin{equation*}
\tan x^{\circ}=\frac{1}{3} \tan 40^{\circ} \tag{4}
\end{equation*}
$$

(b) Hence solve, for $0 \leqslant \theta<360$,

$$
2 \cos (2 \theta+50)^{\circ}=\sin (2 \theta+40)^{\circ}
$$

giving your answers to 1 decimal place.
4. The curve C has the equation

$$
f(x)=e^{3 x} \sin 5 x
$$

Show that the turning points of C occur when $\tan 5 x=-\frac{5}{3}$
5. The circle C has equation $x^{2}+y^{2}-4 x+8 y=33$.
(a) Express C in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$

The points $P(-5,-2)$ and $Q(9,-6)$ both lie on C.
(b) Show that $P Q$ is a diameter of C.
6. The curve C has equation $y=x^{3}+6 x^{2}-12 x+6$
a) Show that C is concave on the interval $[-5,-3]$.
b) Find the coordinates of the point of inflection.

Mark Scheme

1.

1a	$(f(-2))=\left(-2^{3}\right)-3 \times(-2)+2$	Attempts $f(-2)$. Some sight of (-2) embedded or calculation is required.	M1
	$f(-2)=0$ so $(x+2)$ is a factor.	Requires correct statement and conclusion. Both " $f(-2)=0$ " and " $(x+2)$ is a factor" must be seen in the solution. This may be seen in a preamble before finding $f(-2)=0$, but in these cases there must be a minimal statement ie QED, "proved" etc.	A1
1b	$\frac{3 x^{3}+x^{2}-18 x+20}{x^{3}-3 x+2}=3+\frac{x^{2}-9 x+14}{x^{3}-3 x+2}$	Division attempted, by any method	M1 A1
	$\frac{x^{2}-9 x+14}{x^{3}-3 x+2}=\frac{4}{x+2}+\frac{2}{(x-1)^{2}}-\frac{3}{x-1}$	Denominators and multiplying Eliminating to find constants	M1 M1
	$\frac{3 x^{3}+x^{2}-18 x+20}{x^{3}-3 x+2}=3+\frac{4}{x+2}+\frac{2}{(x-1)^{2}}-\frac{3}{x-1}$	Correct form with 2 constants correct Correct form with 3 constants correct	A1 A1

(a)	$\tan \theta+\cot \theta \equiv \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}$	M1
	$\equiv \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$	A 1
	$\equiv \frac{1}{\frac{1}{2} \sin 2 \theta}$	M 1
	$\equiv 2 \operatorname{cosec} 2 \theta \quad *$	$\mathrm{~A} 1 *$
(b)	Real solutions when $\{k: k \leq-2\} \cup\{k: k \geq 2\}$	(4)
		B1

Notes:

(a)

M1: Writes $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\cot \theta=\frac{\cos \theta}{\sin \theta}$
A1: Achieves a correct intermediate answer of $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}$
M1: Uses the double angle formula $\sin 2 \theta=2 \sin \theta \cos \theta$
A1*: Completes proof with no errors. This is a given answer.

Note: There are many alternative methods. For example
$\tan \theta+\cot \theta \equiv \tan \theta+\frac{1}{\tan \theta} \equiv \frac{\tan ^{2} \theta+1}{\tan \theta} \equiv \frac{\sec ^{2} \theta}{\tan \theta} \equiv \frac{1}{\cos ^{2} \theta \times \frac{\sin \theta}{\cos \theta}} \equiv \frac{1}{\cos \theta \times \sin \theta}$ then as the
main scheme.
(b)

B1: Scored for sight of $\sin 2 \theta=2$ and a reason as to why this equation has no real solutions. Possible reasons could be $-1 \leqslant \sin 2 \theta \leqslant 1$ \qquad and therefore $\sin 2 \theta \neq 2$ or $\sin 2 \theta=2 \Rightarrow 2 \theta=\arcsin 2$ which has no answers as $-1 \leqslant \sin 2 \theta \leqslant 1$
3.

Question Number	Scheme	Marks
3(a)	$\begin{gathered} 2 \cos x \cos 50-2 \sin x \sin 50=\sin x \cos 40+\cos x \sin 40 \\ \sin x(\cos 40+2 \sin 50)=\cos x(2 \cos 50-\sin 40) \end{gathered}$	M1
	$\div \cos x \Rightarrow \tan x(\cos 40+2 \sin 50)=2 \cos 50-\sin 40$	M1
	$\tan x=\frac{2 \cos 50-\sin 40}{\cos 40+2 \sin 50}, \quad$ (or numerical answer awrt 0.28)	A1
	States or uses $\cos 50=\sin 40$ and $\cos 40=\sin 50$ and so $\tan x^{\circ}=\frac{1}{3} \tan 40^{\circ} * \quad$ cao	A1 * (4)
(b)	Deduces $\quad \tan 2 \theta=\frac{1}{3} \tan 40$	M1
	$2 \theta=15.6 \quad$ so $\quad \theta=$ awrt 7.8(1) One answer	A1
	Also $2 \theta=195.6,375.6,555.6 \Rightarrow \theta=.$.	M1
	$\theta=$ awrt $7.8,97.8,187.8,277.8$ All 4 answers	A1
		(4)
		[8 marks]

$\begin{gathered} \text { Alt } 1 \\ \text { 3(a) } \end{gathered}$	$\begin{gathered} 2 \cos x \cos 50-2 \sin x \sin 50=\sin x \cos 40+\cos x \sin 40 \\ 2 \cos x \sin 40-2 \sin x \cos 40=\sin x \cos 40+\cos x \sin 40 \\ \div \cos x \Rightarrow 2 \sin 40-2 \tan x \cos 40=\tan x \cos 40+\sin 40 \\ \tan x=\frac{\sin 40}{3 \cos 40}(\text { or numerical answer awrt } 0.28), \Rightarrow \tan x=\frac{1}{3} \tan 40 \end{gathered}$	M1 M1 A1,A1
$\begin{gathered} \text { Alt } 2 \\ \text { 3(a) } \end{gathered}$	$\begin{gathered} 2 \cos (x+50)=\sin (x+40) \Rightarrow 2 \sin (40-x)=\sin (x+40) \\ 2 \cos x \sin 40-2 \sin x \cos 40=\sin x \cos 40+\cos x \sin 40 \\ \div \cos x \Rightarrow 2 \sin 40-2 \tan x \cos 40=\tan x \cos 40+\sin 40 \\ \tan x=\frac{\sin 40}{3 \cos 40}(\text { or numerical answer awrt } 0.28), \Rightarrow \tan x=\frac{1}{3} \tan 40 \end{gathered}$	M1 M1 A1,A1

(a)

M1 Expand both expressions using $\cos (x+50)=\cos x \cos 50-\sin x \sin 50$ and
$\sin (x+40)=\sin x \cos 40+\cos x \sin 40$. Condone a missing bracket on the lhs.
The terms of the expansions must be correct as these are given identities. You may condone a sign error on one of the expressions.
Allow if written separately and not in a connected equation.
M1 Divide by $\cos x$ to reach an equation in $\tan x$.
Below is an example of M1M1 with incorrect sign on left hand side
$2 \cos x \cos 50+2 \sin x \sin 50=\sin x \cos 40+\cos x \sin 40$
$\Rightarrow 2 \cos 50+2 \tan x \sin 50=\tan x \cos 40+\sin 40$
This is independent of the first mark.

A1 $\quad \tan x=\frac{2 \cos 50-\sin 40}{\cos 40+2 \sin 50}$
Accept for this mark $\tan x=$ awrt $0.28 \ldots$ as long as M1M1 has been achieved.
A1* States or uses $\cos 50=\sin 40$ and $\cos 40=\sin 50$ leading to showing
$\tan x=\frac{2 \cos 50-\sin 40}{\cos 40+2 \sin 50}=\frac{\sin 40}{3 \cos 40}=\frac{1}{3} \tan 40$

This is a given answer and all steps above must be shown. The line above is acceptable.
Do not allow from $\tan x=$ awrt 0.28 ...
(b)

M1 For linking part (a) with (b). Award for writing $\tan 2 \theta=\frac{1}{3} \tan 40$
A1 \quad Solves to find one solution of θ which is usually (awrt) 7.8
M1 Uses the correct method to find at least another value of θ. It must be a full method but can be implied by any correct answer.

Accept $\theta=\frac{180+\text { their } \alpha}{2},($ or $) \frac{360+\text { their } \alpha}{2}$, (or $) \frac{540+\text { their } \alpha}{2}$
A1 Obtains all four answers awrt 1dp. $\theta=7.8,97.8,187.8,277.8$.
Ignore any extra solutions outside the range.
Withhold this mark for extras inside the range.
Condone a different variable. Accept $x=7.8,97.8,187.8,277.8$

Answers fully given in radians, loses the first A mark.
Acceptable answers in rads are awrt 0.136, 1.71, 3.28, 4.85
Mixed units can only score the first M 1
4.

$f^{\prime}(x)=3 e^{3 x} \sin 5 x+5 e^{3 x} \cos 5 x$	Applying product rule $\frac{d u}{d x}$ correct $\frac{d v}{d x}$ correct	M1 A1
$f^{\prime}(x)=e^{3 x}(3 \sin 5 x+5 \cos 5 x)=0$	Solving bracket $=0$	M1
$\tan 5 x=\frac{-5}{3} *$		A1

5.

a	$(x-2)^{2}+(y+4)^{2}=\sqrt{53^{2}}$		M1 A1
b	Midpoint $=\left(\frac{-5+9}{2}, \frac{-2-6}{2}\right)$	Many other ways this could be shown.	M1 A1
	$\therefore(2,-4)$ which is centre of circle		

6.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Finds $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+12 x-12$	M1	1.1b	7th Use second derivatives to solve problems of concavity, convexity and points of inflection
	Finds $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x+12$	M1	1.1b	
	States that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x+12 \leq 0$ for all $-5 \leqslant x \leqslant-3$ and concludes this implies C is concave over the given interval.	B1	3.2a	
		(3)		
7b	States or implies that a point of inflection occurs when $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$	M1	3.1a	7th Use second derivatives to solve problems of concavity, convexity and points of inflection
	Finds $x=-2$	A1	1.1b	
	Substitutes $x=-2$ into $y=x^{3}+6 x^{2}-12 x+6$, obtaining $y=$ 46	A1	1.1b	
		(3)		(6 marks)

