Tracking Test 3 Part A

(36 marks: 43 minutes)

1 $f(x) = x^3 - 3x + 2$.

(a) Use the factor theorem to show that
$$(x+2)$$
 is a factor of $f(x)$.

(b) Given that $f(x) = (x + 2)(x - 1)^2$,

express $\frac{3x^3+x^2-18x+20}{x^3-3x+2.}$ in partial fractions.

2 (a) Prove that

$$tan\theta + cot\theta = 2cosec2\theta, \qquad \theta \neq \frac{n\pi}{2}, \ n \in \mathbb{Z}$$
(4)

(b) Given the equation

$$tan\theta + cot\theta = k$$

has real solutions, find all possible values of k.

Write your answer in set notation.

3. Given that

$$2\cos(x+50)^\circ = \sin(x+40)^\circ$$

(a) Show, without using a calculator, that

$$\tan x^\circ = \frac{1}{3}\tan 40^\circ \tag{4}$$

(b) Hence solve, for $0 \le \theta \le 360$,

$$2\cos(2\theta+50)^\circ=\sin(2\theta+40)^\circ$$

giving your answers to 1 decimal place.

(4)

(1)

(6)

(2)

4. The curve C has the equation

$$f(x) = e^{3x} \sin 5x$$

Show that the turning points of C occur when $tan5x = -\frac{5}{3}$

5. The circle *C* has equation $x^2 + y^2 - 4x + 8y = 33$. (a) Express *C* in the form $(x - a)^2 + (y - b)^2 = r^2$ (2) The points *P*(-5,-2) and *Q*(9,-6) both lie on *C*. (b) Show that *PQ* is a diameter of *C*. (2)

- 6. The curve C has equation $y = x^3 + 6x^2 12x + 6$
 - a) Show that C is concave on the interval [-5,-3].
 - b) Find the coordinates of the point of inflection.

END OF PART A

(3)

(3)

Mark Scheme

1.

1a	$(f(-2)) = (-2^3) - 3 \times (-2) + 2$	Attempts $f(-2)$. Some sight of (-2) embedded or calculation is required.		
	f(-2) = 0 so $(x + 2)$ is a factor.	Requires correct statement and conclusion. Both " $f(-2) = 0$ " and " $(x + 2)$ is a factor" must be seen in the solution. This may be seen in a preamble before finding f(-2) = 0, but in these cases there must be a minimal statement ie QED, "proved" etc.	A1	
1b	$\frac{3x^3 + x^2 - 18x + 20}{x^3 - 3x + 2} = 3 + \frac{x^2 - 9x + 14}{x^3 - 3x + 2}$	Division attempted, by any method	M1 A1	
	$\frac{x^2 - 9x + 14}{x^3 - 3x + 2} = \frac{4}{x + 2} + \frac{2}{(x - 1)^2} - \frac{3}{x - 1}$	Denominators and multiplying Eliminating to find constants	M1 M1	
	$\frac{3x^3 + x^2 - 18x + 20}{x^3 - 3x + 2} = 3 + \frac{4}{x + 2} + \frac{2}{(x - 1)^2} - \frac{3}{x - 1}$	Correct form with 2 constants correct Correct form with 3 constants correct	A1 A1	

Question	Scheme	Marks
(a)	$\tan\theta + \cot\theta \equiv \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$	M1
	$\equiv \frac{\sin^2\theta + \cos^2\theta}{\sin\theta\cos\theta}$	A1
	$=\frac{1}{\frac{1}{2}\sin 2\theta}$	M1
	$\equiv 2 \csc 2\theta *$	A1*
		(4)
(b)	Real solutions when $\{k: k \leq -2\} \cup \{k: k \geq 2\}$	B1
		(1)
		(5 marks)

Question Number	Scheme	Marks
3(a)	$2\cos x\cos 50 - 2\sin x\sin 50 = \sin x\cos 40 + \cos x\sin 40$	M1
	$\sin x(\cos 40 + 2\sin 50) = \cos x(2\cos 50 - \sin 40)$	
	$\div \cos x \Longrightarrow \tan x (\cos 40 + 2\sin 50) = 2\cos 50 - \sin 40$	M 1
	$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50}, \qquad \text{(or numerical answer awrt 0.28)}$	
	States or uses $\cos 50 = \sin 40$ and $\cos 40 = \sin 50$ and so $\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ} *$ cao	A1 * (4)
(b)	Deduces $\tan 2\theta = \frac{1}{3}\tan 40$	M 1
	$2\theta = 15.6$ so $\theta = \text{ awrt } 7.8(1)$ One answer	A1
	Also $2\theta = 195.6, 375.6, 555.6 \Rightarrow \theta =$	M1
	$\theta = $ awrt 7.8 , 97.8, 187.8, 277.8 All 4 answers	A1
		(4)
		[8 marks]
		1
Alt 1 3(a)	$2\cos x\cos 50 - 2\sin x\sin 50 = \sin x\cos 40 + \cos x\sin 40$	M 1
	$2\cos x\sin 40 - 2\sin x\cos 40 = \sin x\cos 40 + \cos x\sin 40$	
	$\div\cos x \Longrightarrow 2\sin 40 - 2\tan x \cos 40 = \tan x \cos 40 + \sin 40$	M 1
	$\tan x = \frac{\sin 40}{3\cos 40} (\text{ or numerical answer awrt } 0.28), \implies \tan x = \frac{1}{3} \tan 40$	A1,A1
Alt 2 3(a)	$2\cos(x+50) = \sin(x+40) \Longrightarrow 2\sin(40-x) = \sin(x+40)$	
	$2\cos x\sin 40 - 2\sin x\cos 40 = \sin x\cos 40 + \cos x\sin 40$	M1
	$\div\cos x \Longrightarrow 2\sin 40 - 2\tan x \cos 40 = \tan x \cos 40 + \sin 40$	M 1
	$\tan x = \frac{\sin 40}{3\cos 40} (\text{ or numerical answer awrt } 0.28), \implies \tan x = \frac{1}{3} \tan 40$	A1,A1

	Notes for Question 3
(a)	
M1	Expand both expressions using $\cos(x+50) = \cos x \cos 50 - \sin x \sin 50$ and $\sin(x+40) = \sin x \cos 40 + \cos x \sin 40$. Condone a missing bracket on the lhs. The terms of the expansions must be correct as these are given identities. You may condone a sign error on one of the expressions. Allow if written separately and not in a connected equation.
M1	Divide by $\cos x$ to reach an equation in $\tan x$. Below is an example of M1M1 with incorrect sign on left hand side $2\cos x \cos 50 + 2\sin x \sin 50 = \sin x \cos 40 + \cos x \sin 40$ $\Rightarrow 2\cos 50 + 2\tan x \sin 50 = \tan x \cos 40 + \sin 40$ This is independent of the first mark.
A1 A1*	$\tan x = \frac{2\cos 50 - \sin 40}{\cos 40 + 2\sin 50}$ Accept for this mark $\tan x = \text{awrt } 0.28$ as long as M1M1 has been achieved. States or uses $\cos 50 = \sin 40$ and $\cos 40 = \sin 50$ leading to showing $2\cos 50 = \sin 40$ and $\sin 40 = 1$
	$\tan x = \frac{2\cos 360 - \sin 40}{\cos 40 + 2\sin 50} = \frac{\sin 40}{3\cos 40} = \frac{1}{3}\tan 40$

This is a given answer and all steps above must be shown. The line above is acceptable. Do not allow from $\tan x = \text{awrt } 0.28...$

(b)

M1 For linking part (a) with (b). Award for writing $\tan 2\theta = \frac{1}{3} \tan 40$

A1 Solves to find one solution of θ which is usually (awrt) 7.8

M1 Uses the correct method to find at least another value of θ . It must be a full method but can be implied by any correct answer.

Accept
$$\theta = \frac{180 + their\alpha}{2}$$
, $(or)\frac{360 + their\alpha}{2}$, $(or)\frac{540 + their\alpha}{2}$

A1 Obtains all four answers awrt 1dp. $\theta = 7.8, 97.8, 187.8, 277.8$. Ignore any extra solutions outside the range. Withhold this mark for extras inside the range. Condone a different variable. Accept x = 7.8, 97.8, 187.8, 277.8

Answers fully given in radians, loses the first A mark. Acceptable answers in rads are awrt 0.136, 1.71, 3.28, 4.85 Mixed units can only score the first M 1

$f'(x) = 3e^{3x}sin5x + 5e^{3x}cos5x$	Applying product rule $\frac{du}{dx}$ correct $\frac{dv}{dx}$ correct	M1 A1 A1
$f'(x) = e^{3x}(3sin5x + 5cos5x) = 0$ $tan5x = \frac{-5}{3}*$	Solving bracket =0	M1 A1

5.

а	$(x-2)^2 + (y+4)^2 = \sqrt{53^2}$		M1 A1
b	Midpoint = $(\frac{-5+9}{2}, \frac{-2-6}{2})$ = (2, -4) which is centre of circle $\therefore PQ$ is a diameter	Many other ways this could be shown.	M1 A1

6.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
7a	Finds $\frac{dy}{dx} = 3x^2 + 12x - 12$	M1	1.1b	7th	
	Finds $\frac{d^2 y}{dx^2} = 6x + 12$	M1	1.1b	to solve problems of concavity, convexity and points of inflection.	
	States that $\frac{d^2 y}{dx^2} = 6x + 12 \le 0$ for all $-5 \le x \le -3$ and concludes this implies <i>C</i> is concave over the given interval.	B1	3.2a	_	
		(3)			
7b	States or implies that a point of inflection occurs when $\frac{d^2 y}{dx^2} = 0$	M1	3.1a	7th Use second derivatives to solve problems of	
	Finds $x = -2$	A1	1.1b	and points of inflection.	
	Substitutes $x = -2$ into $y = x^3 + 6x^2 - 12x + 6$, obtaining $y = 46$	A1	1.1b		
		(3)		(6 marks)	