TRACKING TEST 2 FP2 PRACTICE PAPER 363 marks
 Time: one hour and 15 minutes

1.

Figure 1

Figure 1 shows a sketch of the cardioid C with equation $r=a(1+\cos \theta),-\pi<\theta \leq \pi$. Also shown are the tangents to C that are parallel and perpendicular to the initial line. These tangents form a rectangle $W X Y Z$.
(a) Find the area of the finite region, shaded in Fig. 1, bounded by the curve C.
(b) Find the polar coordinates of the points A and B where $W Z$ touches the curve C.
(c) Hence find the length of $W X$.

Given that the length of $W Z$ is $\frac{3 \sqrt{3} a}{2}$,
(d) find the area of the rectangle $W X Y Z$.

A heart-shape is modelled by the cardioid C, where $a=10 \mathrm{~cm}$. The heart shape is cut from the rectangular card $W X Y Z$, shown in Fig. 1.
(e) Find a numerical value for the area of card wasted in making this heart shape.
2. (a) Express as a simplified fraction $\frac{1}{(r-1)^{2}}-\frac{1}{r^{2}}$.
(b) Prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=2}^{n} \frac{2 r-1}{r^{2}(r-1)^{2}}=1-\frac{1}{n^{2}} . \tag{3}
\end{equation*}
$$

3. Solve the inequality $\frac{1}{2 x+1}>\frac{x}{3 x-2}$.
4. (a) Using the substitution $t=x^{2}$, or otherwise, find

$$
\begin{equation*}
\int x^{3} \mathrm{e}^{-x^{2}} \mathrm{~d} x \tag{6}
\end{equation*}
$$

(b) Find the general solution of the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=x \mathrm{e}^{-x^{2}}, x>0 \tag{4}
\end{equation*}
$$

5.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} t}+9 y=4 \mathrm{e}^{3 t}, \quad t \geq 0
$$

(a) Show that $K t^{2} \mathrm{e}^{3 t}$ is a particular integral of the differential equation, where K is a constant to be found.
(b) Find the general solution of the differential equation.

Given that a particular solution satisfies $y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ when $t=0$,
(c) find this solution.

Another particular solution which satisfies $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=0$ when $t=0$, has equation

$$
y=\left(1-3 t+2 t^{2}\right) \mathrm{e}^{3 t} .
$$

(d) For this particular solution draw a sketch graph of y against t, showing where the graph crosses the t-axis. Determine also the coordinates of the minimum of the point on the sketch graph.
6. (a) Use de Moivre's theorem to show that

$$
\begin{equation*}
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \tag{6}
\end{equation*}
$$

(b) Hence find 3 distinct solutions of the equation $16 x^{5}-20 x^{3}+5 x+1=0$, giving your answers to 3 decimal places where appropriate.

TOTAL MARKS: 63 marks

