A Level Maths

The Final Countdown VJM

Name.

A Level Niaths The Final Countdown VJivi

From March $12^{\text {th }}$, your weekly assignment will consist of three old exam papers.
The plan is shown on page 4. Each week there will be a test on a paper (that you won't have seen before) which I will mark and get back to you next lesson.
If you follow this plan, you will complete a total of 14 papers for each module plus resit papers

How to get 100% in every exam, first of all believe itt

The key to success is honest self-assessment followed by remedial action.
If you are honest with yourself about how much you understand the work and if you take remedial action to improve your weak areas, you will get a grade A* in your Maths A2 course. (Unless you make lots of expensive errors).

The Mark Scheme Is Your Enemy

When you work through these papers, do NOT use the mark scheme every time you get stuck; try to work out what to do by yourself. You won't have the mark scheme in the real exam! Do the test in 90 minutes and then mark it. If you don't get full marks on a question, find out what went wrong (use the textbook, ask your buddy, use a video on exam solutions or any other form of support). Then go back to it a day later and do it again (without looking at the mark scheme). Keep doing this until you can get the question right without help. This is the way you will improve your understanding.
Record the paper on you exam record card
In the mark schemes, the following symbols are used:
M marks: method marks are awarded for 'knowing a method and attempting to apply it'.
A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
B marks are for the correct answer (method not necessary)

MiadAsiMaths/Solomon Papers

A good way to practice is to try lots of hard questions. The Solomon papers are slightly (but not much) harder than the EDEXCEL papers. They are on the VLE if you want to do some extra questions. The Miscellaneous Exercises at the end of each Chapter in the textbook are also a very good source.
The C3 and C4 papers on the MadAsMaths website are excellent.
C3: http://www.madasmaths.com/archive iygb practice papers c3 practice papers.html
C4: http://www.madasmaths.com/archive iygb practice papers c4 practice papers.html

Remember

Remember: never cross out a whole solution. Draw a line under it. If you do a question twice and produce one correct solution, you will get full marks and your wrong solution will be ignored.

Resources

- Use the topic booklets given out in class
- Look at videos and resources from other websites, e.g.
- Exam Solutions: https://www.youtube.com/user/ExamSolutions
- Mr Hegarty: https://www.youtube.com/user/HEGARTYMATHS/videos
- Physics and Maths tutor http://www.physicsandmathstutor.com/
- MadAsMaths http://www.madasmaths.com/

Formulae to Learn

The list of the formulae that you need to learn starts on page 9. Make sure you remember all these formulae.

Record Card

Record your marks in the table on page 14. I will also keep a copy of this at College. Keep this table up to date. Use the table on page 13 to convert your mark to a UMS.

Start week beginning	My topic studied this week Write here	Weekly Assignment, 3 papers done, redone marked and entered on record card tick	Resit papers done, redone Tick (make a record card)	Lesson topic	Lesson topic
March $12^{\text {th }}$		$\begin{aligned} & \text { Summer } 2010 \mathrm{C} 3 \\ & \text { Summer } 2010 \mathrm{C} 4 \\ & \text { Summer } 2010 \mathrm{M} 2 \end{aligned}$		C4 Volumes of revolution Cartesian and Parametric	C3 Algebra and Functions including Domain and Range*
March 19 ${ }^{\text {min }}$		$\begin{aligned} & \text { January } 2011 \mathrm{C} 3 \\ & \text { January } 2011 \mathrm{C} 4 \\ & \text { January } 2011 \mathrm{M} 2 \end{aligned}$		C4 Vectors	M2 Statics (ladders)
March $26{ }^{\text {th }}$		Summer 2011 C3 Summer 2011 C4 Summer 2011 M2 January 2012 C3 January 2012 C4 January 2012 M2	C4 Mock in lesson on March $27^{\text {th }}$	M2 Centre of Mass	C4 Solving Differential Equations
April $16^{\text {th }}$		$\begin{aligned} & \text { Summer } 2012 \text { C3 } \\ & \text { Summer } 2012 \text { C4 } \\ & \text { Summer } 2012 \text { M2 } \end{aligned}$	M2 Mock in lesson on April $17^{\text {th }}$	C4 Parametric Equations tangents normal areas	M2 Kinematics Projectiles
April $23{ }^{\text {ra }}$		January 2013 C3 January 2013 C4 January 2013 M2	C3 Mock in lesson on April $24^{\text {th }}$	M2 Work Energy Power	C3 trig and $R \cos (x-\alpha)$
April $30{ }^{\text {th }}$		Summer 2013 C3 Summer 2013 C4 Summer 2013 M2		M2 Collisions	C3 Trig Inverse trig $\arcsin x$ etc
May ${ }^{\text {7h }}$		Summer 2013(R) C3 Summer 2013(R) C4 Summer 2013(R) M2		C4 Binomial series	C4 Differentiation Implicit , sec cosec cot Connected rates of change
May $14^{\text {th }}$	$\begin{array}{\|l} \hline \text { Study leave } \\ \text { starts May } \\ 21^{\text {tt }} \end{array}$	$\begin{aligned} & \text { Summer } 2014 \text { C3 } \\ & \text { Summer } 2014 \text { C4 } \\ & \text { Summer } 2014 \text { M2 } \end{aligned}$		M2 Motion in a plane	C4 Trapezium Rule Numerical methods
May $21^{\text {st }}$ May $28{ }^{\text {th }}$		Summer 2014(R) C3 Summer 2014(R) C4 Summer 2014(R) M2 Summer 2015 C3 Summer 2015 C4 Summer 2015 M2			

*In these lessons you will be free to revise whatever topic you feel is a priority.
Provisional exam dates:
C1 (resit): $16^{\text {th }}$ May a.m. $C 2$ (resit): $23^{\text {rd }}$ May a.m. M1 (resit): $6^{\text {th }}$ June a.m. S1 (resit): $13^{\text {th }}$ June a.m.
C3: $19^{\text {th }}$ June p.m. C4: $22^{\text {nd }}$ June a.m. M2: $15^{\text {th }}$ June p.m. S2: $25^{\text {th }}$ June a.m. \quad D1: $15^{\text {th }}$
June p.m.
(please refer to your exam timetable for confirmation of these dates)

How To Study An Exam Paper

DO NOT simply copy out the mark scheme.
Here is why we ask you to study exam papers. By following this programme of exam paper study, you will:

Improve your knowledge of how to solve standard problems... By completing every question from past papers you will encounter almost every question that has been put into your real exam.

Improve the accuracy of your algebra... The exam board have told us that the only difference between E grade students and A grade students is that the A grade students make fewer algebraic errors. Being able to answer the questions is not enough. You need to be able to answer them without making expensive errors, and this is not something you can learn at the last minute. It takes practice.

Improve the speed of your algebra... Your real exam will be an algebra sprint. It is very important that you get used to the speed required.

Studying an exam paper is not the same as just doing an exam paper.

This is what you should ПOt do:

DON'T Sit down and complete an exam paper
 nice and cosy just you and the mark scheme to glance at when you get stuck.

DON'T keep jumping over the bits of questions you can't do. Are you really learning like this or just testing what you know already?
I can do this but I can't do this so l'll jump over it, etc......I'm doing ok at maths especially with all the bits I can do!
Do you have any more knowledge? $\mathbb{N} O$. You have read the solutions to the questions you couldn't do, but this doesn't mean you can actually do them $*$

Have you improved the accuracy of your algebra? $\mathbb{N O}$. As soon as you finished the paper you went to the mark scheme. You didn't practice the most important part of an exam - looking for and correcting your errors $*$

Have you improved the speed of your algebra? $\mathbb{N O}$. You didn't try to complete each question in a fixed number of minutes so you still have no idea whether you were going at exam speed ${ }^{*}$

This is what you Should do:

1. DO Complete the exam paper in exam conditions. This means you continue working for the full 90 minutes and make a real determined effort to find your errors before the time is up.
2. DO the paper on your own without
a. The mark scheme
b. A friend at your side
c. Textbooks
d. Any other support
3. DO Mark the paper carefully using the mark scheme
4. DO Look at all the marks you lost - categorising them as being due to
a. $\mathrm{LU}=\mathrm{Lack}$ of understanding (not knowing what to do)
b. $\mathrm{EE}=$ An expensive error (something that seems silly when you realise what you did)
5. DO Study your mistakes using
a. The mark scheme
b. Your Survival kit if you completed yours
c. Textbooks
d. Videos
e. etc.
6. DO Wait a day then repeat any question that you lost marks on using the strict timing (number of minutes = number of marks) and looking for your errors before you look at the mark scheme.
7. DO Repeat steps 3 and 4 over and over again until you are confident that if any of those questions are in your real exam, you will be able to do them quickly and accurately.

What has this process done to improve your chance of getting an improved grade in the real exam?

Do you have any more knowledge? YES. You kept going back to the harder questions until you could do them, so if these questions come up in your exam you, unlike some other students, can be confident you will know what to do \odot

Have you improved the accuracy of your algebra? YES. Not only have you practised finding errors during step one of the process, the fact that you have written them down and categorised them will help you to be more aware of the sorts of errors you make and this will help you, unlike other students, to avoid making them in the real exam © \odot

Have you improved the speed of your algebra? YES. Every time you complete a paper (or question) in the correct time you are training yourself to be more comfortable working at the speed Page | 6
needed in the exam. This means that, unlike some other students, you won't have the problem of running out of time -

The key to success is honest self assessment followed by remedial action.

Resits use the schedule above

Planning and preparation prevent poor performance

Summarise each topic into a five point hand!

Expensive Errors

1. Use a calculator which does integration and differentiation. Carry out this calculation on your calculator before starting the question so you have an aim. You can bring more than one calculator into the exam.
2. In many questions, it's possible to take your answer and substitute values back in to the question.
3. Do some questions again. Pick the hardest question or one with most algebraic manipulation. Don't cross out either answer: your best answer counts.
4. Circle or highlight key phrases in questions. e.g. "3 decimal places", "Hence", "Exact Answer", "Simplified Fraction" If a question asks you to "Write Down" an answer, this normally means there's just one mark. Don't spend ages on this - there must be a quick way.
5. Read the question after you've finished the answer to check you've done what it asks you to.
6. Don't spend too long on one question. Keep a close eye on the time. Put a watch on your desk rather than keep looking at the clock on the wall. Make sure you know how many marks for each question and aim for a minute per mark.
7. Beware of taking shortcuts with your working. It doesn't take that long to write out an intermediate step.
e.g.

$$
\begin{aligned}
x^{2}+9 x+4 & =2(x-4) \\
\therefore x^{2}+7 x-4 & =0
\end{aligned}
$$

8. Avoid basic arithmetic and algebraic errors.
e.g. $\quad 5-(2-x)=3-x, \quad 3^{2}+5=11, \quad 2+5(-1)^{3}=7$
9. Learn the formulae.
10. If you're asked to "Prove" or "Show" something, the last line in your working should state the answer. It's not just enough to write "As required" or "Q.E.D." - you must write out the statement at the end.
(a) Show that the x-coordinate of A satisfies the equation

$$
x=\frac{\ln (20-x)}{\ln 2}-1
$$

11. Don't take any shortcuts with proofs. Write out every step. LHS \equiv

$$
\begin{aligned}
\text { or RHS } & \equiv \\
& \equiv \\
& \equiv \mathrm{LHS}
\end{aligned}
$$

12. You may know that $\frac{\tan \theta}{\sec \theta}=\sin \theta$ but if it's part of a proof, you must go through the intermediate step.

Formulae C3

These formulae are in the formula booklet but you should learn them anyway
$\mathrm{e}^{x \ln a}=a^{x}$
$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right)$
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \quad \sin A-\sin B=2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$
$\cos A+\cos B=2 \cos \frac{A+B}{2} \cos \frac{A-B}{2} \quad \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$

$\mathrm{f}(x)$	$\mathrm{f}^{\prime}(x)$
$\tan k x$	$k \sec ^{2} k x$
$\sec x$	$\sec ^{2} \tan x$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$
$\frac{\mathrm{f}(x)}{\mathrm{g}(x)}$	$\frac{\mathrm{f}^{\prime}(x) \mathrm{g}(x)-\mathrm{f}(x) \mathrm{g}^{\prime}(x)}{(\mathrm{g}(x))^{2}}$

These formula are NOT in the formula booklet so you MUST

learn them.

$$
\sin ^{2} x+\cos ^{2} x=1 \quad 1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\operatorname{cosec}^{2} x
$$

y	$\frac{\mathrm{dy}}{\mathrm{dx}}$
$\sin \mathrm{x}$	$\cos \mathrm{x}$
$\cos \mathrm{x}$	$-\sin \mathrm{x}$
$\tan \mathrm{x}$	$\sec ^{2} \mathrm{x}$
$\cot \mathrm{x}$	$-\operatorname{cosec}^{2} \mathrm{x}$
$\sec \mathrm{x}$	$\sec \mathrm{x} \tan \mathrm{x}$
$\operatorname{cosec} \mathrm{x}$	$-\operatorname{cosec} \mathrm{cot} \mathrm{x}$
$\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$	$\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{g}(\mathrm{x})+\mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})$
e^{x}	e^{x}
$\ln \mathrm{x}$	$\frac{1}{\mathrm{x}}$
a^{x}	$a^{x} \ln a$

The formulae for differentiating tan, cot, sec and cosec are in the formula booklet. I have included them here for the sake of completeness
$\sin 2 A=2 \sin A \cos A$
$\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} \quad \cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1 \quad \cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$
$\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$
You also need to know the graphs of $y=\arcsin x, y=\arccos x$ and $y=\arctan x$

Formulae C4

These formulae are in the formula booklet but you should learn them anyway

There is no time in the exam to trawl through the formula book!

$\mathbf{f}(\boldsymbol{x})$	$\int \mathbf{f}(\boldsymbol{x}) \mathbf{d} x^{*}$
$\sec ^{2} \mathrm{kx}$	$\frac{1}{k} \tan \mathrm{kx}+\mathrm{c}$
$\tan x$	$\ln \|\sec x\|+\mathrm{c}$
$\cot x$	$\ln \|\sin x\|+\mathrm{c}$
$\operatorname{cosec} x$	$-\ln \|\operatorname{cosec} x+\cot x\|=\ln \left\|\tan \left(\frac{1}{2} x\right)\right\|+\mathrm{c}$
$\sec x$	$\ln \|\sec x+\tan x\|=\ln \left\|\tan \left(\frac{1}{2} x+\frac{1}{4} \pi\right)\right\|+\mathrm{c}$

Integration by Parts: $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

*Refer to the flow chart for systematic integration

These formula are NOT in the formula booklet so you MUST

learn them.

The formula for the Binomial Expansion is on the C2 page of the formula booklet but you really must learn it for yourself. "Pattern of one, pattern of two" etc
The formula for the Trapezium Rule is also on the C 2 page.
Partial Fractions: $\quad \frac{a x+b}{(x-a)(x-b)}=\frac{A}{x-a}+\frac{B}{x-b} \quad \frac{a x+b}{(x-a)(x-b)^{2}}=\frac{A}{x-a}+\frac{B}{x-b}+\frac{C}{(x-b)^{2}}$ If the degree of the numerator is greater than or equal to the degree of the denominator, you must divide before turning into partial fractions as the fraction is improper

$f(x)$	$\int \mathrm{f}(\mathrm{x}) \mathrm{d} x$	
$\sin ^{2} \mathrm{x}$	$\frac{1}{2} \mathrm{x}-\frac{1}{4} \sin 2 \mathrm{x}+\mathrm{c}$	(use a formula for $\cos 2 \mathrm{x}$)
$\cos ^{2} \mathrm{x}$	$\frac{1}{2} x+\frac{1}{4} \sin 2 x+c$	(use another formula for $\cos 2 \mathrm{x}$)
$\tan ^{2} \mathrm{x}$	$\tan \mathrm{x}-\mathrm{x}+\mathrm{c}$	(use $1+\tan ^{2} x=\sec ^{2} x$)
$\ln x$	$x \ln \mathrm{x}-\mathrm{x}$	(use integration by parts)
$\frac{f^{\prime}(x)}{f(x)}$	$\ln \|f(x)\|+c$	

Vectors

The equation of a straight line is $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ where \mathbf{a} is a vector from the origin to the line and \mathbf{b} is a vector contained within the line (i.e. the direction of the line)
The dot product of two vectors \mathbf{a} and \mathbf{b} is $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between the lines.
If two lines are perpendicular, their dot product is zero.
Volume of solid of revolution is $\quad V=\int \pi y^{2} d x \quad$ Parametric $V=\int \pi y^{2}\left(\frac{d x}{d t}\right) d t$
It's often forgotten that the Area under a Curve is $\mathrm{A}=\int y d x \quad$ Parametric $\mathrm{A}=\int y\left(\frac{d x}{d t}\right) d t$

Formulae \mathbb{M} 2

These formula are in the formula booklet but you should learn them anyway
Centres of mass for uniform bodies:
Triangular lamina $\frac{2}{3}$ along the median from the vertex (similar triangles along the side)
Circular arc, radius r, angle at centre 2α : $\frac{2 r \sin \alpha}{\alpha}$ from centre
Sector of circle, radius r, angle at centre $2 \alpha: \frac{2 r \sin \alpha}{3 \alpha}$ from centre

These formula are NOT in the formula booklet so you MUST learn them.

suvat (obviously):
$s=u t+\frac{1}{2} a t^{2} ; \quad v=u+a t ; \quad v^{2}=u^{2}+2 a s ; \quad s=\frac{u+v}{2} t ; \quad s=v t-\frac{1}{2} a t^{2}$
$\boldsymbol{a}=\frac{d}{d t}(\boldsymbol{v}) ; \quad \boldsymbol{v}=\frac{d}{d t}(\boldsymbol{r})$

Centre of Mass
Particles: If a system consists of n particles: mass m_{1} with position vector r_{1}, etc then
$\sum m_{i} \mathbf{r}_{\mathrm{i}}=\overline{\mathrm{r}} \sum \mathrm{m}_{\mathrm{i}}$, where $\overline{\mathrm{r}}$ is the position vector of the centre of mass.
Laminas: If the co-ordinates of the three vertices of a uniform triangular lamina are ($\mathrm{x}_{1}, \mathrm{y}_{1}$),
$\left(x_{2}, y_{2}\right)$ and ($\left.x_{3}, y_{3}\right)$ then the centre of mass is at $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
Frameworks: Take the centre of mass of each section of the framework in the middle of each wire

Work, Energy, Power

INPUT = OUTPUT
Work done by a force + energy at the start = Work done against a resisitve force + energy at end
Work done = Force \times distance
Potential Energy $=\mathrm{mgh}$
Kinetic Energy $=\frac{1}{2} m v^{2}$
Force provided by an engine working is P / v Power/Velocity units: watts/metres per second

Formulae Test Yourself: do you know these?

$\sin ^{2} x+\cos ^{2} x=1$
$1+\cot ^{2} \mathrm{x}=\operatorname{cosec}^{2} \mathrm{x}$
$\frac{d}{d x}(\sin x)=\cos x$
$\frac{d}{d x}(\tan x)=\sec ^{2} x$
$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}\left(e^{x}\right)=e^{x}$
$\frac{d}{d x}(\ln x)=\frac{1}{x}$
$\sin 2 \mathrm{~A}=2 \sin \mathrm{~A} \cos \mathrm{~A}$
$\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$
$1+\tan ^{2} x=\sec ^{2} x$
$\frac{d}{d x}(\cos x)=-\sin x$
$\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
$\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
$\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
$\cos 2 \mathrm{~A}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
$\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}$
$\tan 2 \mathrm{~A}=\frac{2 \tan \mathrm{~A}}{1-\tan ^{2} \mathrm{~A}}$

$$
y=\arcsin x
$$

$y=\arccos x$
$y=\arctan x$

$\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$
$\int \cos ^{2} \mathrm{xdx}=\frac{1}{2} \mathrm{x}+\frac{1}{4} \sin 2 \mathrm{x}+\mathrm{c}$
$\int \ln x d x=x \ln x-x$
$\int \frac{1}{x} \mathrm{dx}=\ln |\mathrm{x}|+\mathrm{c}$
$\int \sin ^{2} \mathrm{xdx}=\frac{1}{2} \mathrm{x}-\frac{1}{4} \sin 2 \mathrm{x}+\mathrm{c}$
$\int \frac{f^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})} \mathrm{dx}=\ln |f(x)|+c$
$\int \frac{1}{x^{2}} \mathrm{dx}=-\frac{1}{x}+c+\mathrm{c}$

The dot product of two vectors \mathbf{a} and \mathbf{b} is $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between the lines.
If two lines are perpendicular, their dot product is zero.
Volume of Solid Of Revolution, $V=\int \pi y^{2} d x$
Area under a Curve, $\mathrm{A}=\int y d x$
Work done $=$ Fd
Kinetic Energy $=\frac{1}{2} m v^{2}$

Potential Energy = mgh
Power = Fv

UNIS

		C3						C4				
	A*	A	B	C	D	E	A*	A	B	C	D	E
Year/UMS	90	80	70	60	50	40	90	80	70	60	50	40
Sum 10	69	62	55	48	41	34	68	60	52	44	37	30
Jan 11	68	61	53	45	38	31	72	69	61	53	46	39
Sum 11	70	65	58	51	44	37	68	61	53	46	39	32
Jan 12	70	65	58	51	45	39	70	65	58	51	45	39
Sum 12	70	64	57	51	45	39	69	63	56	49	43	37
Jan 13	69	62	56	50	45	40	68	61	54	47	41	35
Sum 13	63	50	43	36	30	24	68	61	53	46	39	32
Sum 13 (R)	68	61	55	50	45	40	66	57	49	41	34	27
Sum 14	68	60	54	48	42	36	67	59	52	46	40	34
Sum 14 (R)	68	60	54	48	42	36	68	60	53	47	41	35
Sum 15	68	59	53	47	41	35	69	62	56	50	44	39
Sum 16	68	59	53	47	42	37	70	65	58	51	44	38
		M2										
	A*	A	B	C	D	E						
Year/UMS	90	80	70	60	50	40						
Sum 10	68	61	54	47	40	34						
Jan 11	69	62	55	48	41	35						
Sum 11	72	68	61	54	47	40						
Jan 12	72	68	61	54	47	41						
Sum 12	66	57	50	44	38	32						
Jan 13	70	64	57	50	43	37						
Sum 13	67	58	51	44	38	32						
Sum 13 (R)	65	55	48	41	35	29						
Sum 14	70	64	56	48	40	33						
Sum 14 (R)	69	63	55	47	40	33						
Sum 15	70	64	57	50	43	37						
Sum 16	69	62	54	47	40	33						

This table allows you to convert your mark out of 75 into a UMS (Uniform Mark Scale). It is the UMS that determines your grade. This takes into consideration that some papers are harder than others. Papers with high UMS numbers are easier than papers with low UMS numbers. You can see that the C3 paper for Summer 2013 was a hard paper ($50 / 75=$ grade A) but the C4 paper for January 2011 was an easy paper ($69 / 75$ = grade A). Would you prefer a hard paper or an easy paper?
Example: Look at the C3 Summer 2010 paper UMS numbers. If you got 55 out of 75 , that converts to a UMS of 70 which is a B. If you got 57 out of 75 that's a little bit over the threshold for a B so the UMS is probably about 73 .
Remember that all six modules combine to get you your final grade. Add together your six modules and use this table to convert $480-600=\mathrm{A} \quad 420-479=\mathrm{B} \quad 360-419=\mathrm{C} \quad 300-359=\mathrm{D} \quad 240-299=\mathrm{E}$
In order to get a grade A* you need to satisfy BOTH of these conditions:

1) Your total UMS has to be 480 or more
2) Your total UMS for $\mathrm{C} 3+\mathrm{C} 4$ has to be 180 or more

Use this table to work out what average mark you need in your three A2 papers to get each grade.

Total AS UMS	A	B	C	D	E
x	$(480-x) / 3$	$(420-x) / 3$	$(360-x) / 3$	$(300-x) / 3$	$(240-x) / 3$

A Level Maths Exam Practice Chart (C3, C4 \& M2)

$97-$																																				
A * 94-96																																				
90-93																																				
87-89																																				
A $84-86$																																				
80-83																																				
77-79																																				
B 74-76																																				
70-73																																				
67-69																																				
C 64-66																																				
60-63																																				
57-59																																				
D $54-56$																																				
50-53																																				
47-49																																				
E 44-46																																				
40-43																																				
31-39																																				
U 16-30																																				
0-15																																				
Paper	ก	$\stackrel{\sim}{\circ}$	ก	\bigcirc	\bigcirc	ก	ก	\bigcirc	ก	ก	ก	ก	U	U	U	U	U	U	J	U	U	J	U	U	N	N	N	N	N	N	N	N	N	N	N	${ }^{N}$
Jan/Sum																																				
Year																																				

Page | 14

