Test yourself Tracking Test 5

1) (a) Express $3 \cos \theta + 4 \sin \theta$ in the form $R \cos (\theta - \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 90^{\circ}$.

(b) Hence find the maximum value of 3 cos ϑ + 4 sin ϑ and the smallest positive value of ϑ for which this maximum occurs.

The temperature, f(t), of a warehouse is modelled using the equation

f (t) = $10 + 3 \cos(15t)^\circ + 4 \sin(15t)^\circ$, where t is the time in hours from midday and $0 \le t < 24$.

(c) Calculate the minimum temperature of the warehouse as given by this model.

(*d*) Find the value of *t* when this minimum temperature occurs.

2)
$$I = \int_{2}^{5} \frac{1}{4 + \sqrt{(x-1)}} dx$$

.

(a) Given that $y = \frac{1}{4 + \sqrt{(x-1)}}$, copy and complete the table below with values of y

corresponding to x = 3 and x = 5. Give your values to 4 decimal places.

x	2	3	4	5
У	0.2		0.1745	

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of *I*, giving your answer to 3 decimal places.

(c) Using the substitution $x = (u - 4)^2 + 1$, or otherwise, and integrating, find the exact value of *I*.

3) The points A and B have position vectors $2\mathbf{i} + 6\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ respectively.

The line l_1 passes through the points A and B.

- (a) Find the vector AB.
- (b) Find a vector equation for the line l_1 .

A second line l_2 passes through the origin and is parallel to the vector **i** + **k**. The line l_1 meets the line l_2 at the point *C*.

- (c) Find the acute angle between l_1 and l_2 .
- (*d*) Find the position vector of the point *C*.

4) Find the particular solution of the differential equation $\frac{dy}{dx} = 2 \cos^2 y \cos^2 x$; $y = \frac{\pi}{4}$, x = 0

Answers

1) (a) $5\cos(\theta-53.1)$ (b) max value = 5 where 53.13 (c) 5° (d) t = 15.5

2) (a) 0.1847, 0.1667 (b) 0.543 (c) $2 + 8 \ln \frac{5}{6}$

3) a) $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ b) $2\mathbf{i} + 6\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$ c) 45° d) $5\mathbf{i} + 5\mathbf{k}$

4) $\tan y = \frac{1}{2} \sin 2x + x + 1$