Test yourself Tracking Test 5

1) (a) Express $3 \cos \theta+4 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where R and α are constants, R >0 and $0<\alpha<90^{\circ}$.
(b) Hence find the maximum value of $3 \cos \vartheta+4 \sin \vartheta$ and the smallest positive value of ϑ for which this maximum occurs.
The temperature, $f(t)$, of a warehouse is modelled using the equation
$\mathrm{f}(t)=10+3 \cos (15 t)^{\circ}+4 \sin (15 t)^{\circ}$, where t is the time in hours from midday and $0 \leq t<24$.
(c) Calculate the minimum temperature of the warehouse as given by this model.
(d) Find the value of t when this minimum temperature occurs.
2) $I=\int_{2}^{5} \frac{1}{4+\sqrt{ }(x-1)} \mathrm{d} x$.
(a) Given that $y=\frac{1}{4+\sqrt{ }(x-1)}$, copy and complete the table below with values of y corresponding to $x=3$ and $x=5$. Give your values to 4 decimal places.

x	2	3	4	5
y	0.2		0.1745	

(b) Use the trapezium rule, with all of the values of y in the completed table, to obtain an estimate of l, giving your answer to 3 decimal places.
(c) Using the substitution $x=(u-4)^{2}+1$, or otherwise, and integrating, find the exact value of I.
3) The points A and B have position vectors $2 \mathbf{i}+6 \mathbf{j}-\mathbf{k}$ and $3 \mathbf{i}+4 \mathbf{j}+\mathbf{k}$ respectively.

The line l_{1} passes through the points A and B.
(a) Find the vector $\overrightarrow{A B}$.
(b) Find a vector equation for the line l_{1}.

A second line l_{2} passes through the origin and is parallel to the vector $\mathbf{i}+\mathbf{k}$. The line l_{1} meets the line l_{2} at the point C.
(c) Find the acute angle between l_{1} and l_{2}.
(d) Find the position vector of the point C.
4) Find the particular solution of the differential equation $\frac{d y}{d x}=2 \cos ^{2} y \cos ^{2} x ; \quad y=\frac{\pi}{4}, x=0$

Answers

1) (a) $5 \cos (\theta-53.1)$
(b) max value $=5$ where 53.13
(c) 5°
(d) $t=15.5$
2) (a) $0.1847,0.1667$ (b) 0.543 (c) $2+8 \ln \frac{5}{6}$
3) a) $\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$
b) $2 \mathbf{i}+6 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$
c) 45°
d) $5 \mathbf{i}+5 \mathbf{k}$
4) $\tan y=1 / 2 \sin 2 x+x+1$
