Question		Oٍ	璃		Topic	Comment
言	Aa				C3 Differentiation	$e^{x}(\sin 2 x+2 \cos 2 x)$
	Ab				C3 Differentiation	2
	Ac				C3 Differentiation	$-\frac{1}{e^{x}}\left(\operatorname{cosec}^{2} x+\cot x\right)$
	Ad				C3 Differentiation	$\frac{\left(e^{x}+2\right) \sec ^{2} x-e^{x} \tan x}{\left(e^{x}+2\right)^{2}}$
	Ba				C3 Trig solve	$56.6^{\circ}, 236.6^{\circ}$
	Bb				C3 Trig solve	$45^{\circ}, 225^{\circ}$
	Ca				C3 Rcos	$\mathrm{x}=1.69,5.88$
	Cb				C3 Rcos	$\mathrm{x}=1.70,4.02$
	Cc				C3 Rcos	$x=0.28,1.04,3.43,4.18$
	Cd				C3 Rcos	$\mathrm{x}=0.18,4.99$
	Da				C3 Graph Sketching	Use Autograph, your graphical calculator or Desmos to check
	Db				C3 Graph Sketching	Use Autograph, your graphical calculator or Desmos to check
	Dc				C3 Graph Sketching	Use Autograph, your graphical calculator or Desmos to check
	Dd				C3 Graph Sketching	Use Autograph, your graphical calculator or Desmos to check
	MEA				C3 Trig	2
	MEB				C3 Trig	$q=\frac{p^{2}}{2}-1$
	MEC				C3 Trig	$\begin{aligned} \text { L.H.S. } & =\cos ^{2} 2 \theta+\sin ^{2} 2 \sin 2 \theta-2 \sin 2 \theta \cos 2 \theta \\ & =1-\sin 4 \theta=\text { R.H.S. } \end{aligned}$
	1a				C4 partial fractions	$\frac{1}{x+1}+\frac{2}{2 x-1}$
	1b				C4 partial fractions	$\frac{1}{x-2}-\frac{1}{x+2}$
	1c				C4 partial fractions	$x+\frac{1}{2(x+1)}+\frac{1}{2(x-1)}$
	2				C4 Binomial expansion (simple)	$\frac{1}{27}-\frac{2 x}{27}+\frac{8 x^{2}}{81}-\frac{80 x^{3}}{729} \ldots$
	3a				C4 Binomial expansion (simple)	$1-x-\frac{1}{2} x^{2}-\frac{1}{2} x^{3}+\ldots$
	3b				C4 Binomial expansion (estimation)	0.9899495
	3c				C4 Binomial expansion (estimation)	1.4142136 (8sf)
	4a				M2 Projectiles - find height given time	0.85m
	4b				M2 Projectiles - find speed hits floor	$74 \mathrm{~ms}^{-1}$
	4c				M2 Projectiles - angle makes with horizontal	47.5°
	5a				M2 Projectiles - horizontal projection initial velocity	$24 \mathrm{~ms}^{-1}$
	5b				M2 Projectiles - horizontal projection final speed	$25 \mathrm{~ms}^{-1}$
	5c				M2 Projectiles - angular projection, time hit ground	0.51s
	5d				M2 Projectiles - angular projection, horizontal dist	14m

α	β	γ	δ	ε	ζ	η	θ	ι	κ	λ	μ	v	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"Mathematics is a dangerous profession; an appreciable number of us go mad"

A2 Maths with Mechanics Assignment l (iota) Due in the week after Reading week w/b 21/11

Drill
Part A: Differentiate the following functions
(a) $e^{x} \sin 2 x$
(b) $\frac{\left(2 x^{2}-2\right)}{x-1}$
(c) $\frac{\cot x}{e^{x}}$
(d) $\frac{\tan x}{e^{x}+2}$

Part B: Solve these equations for $0 \leq \theta \leq 360^{\circ}$, giving θ to 1 decimal place where appropriate:
(a) $\sin \left(\theta+15^{\circ}\right)=3 \cos \left(\theta+15^{\circ}\right)$
(b) $\sin \theta \cos \theta=\frac{1}{2}$

Part C : Solve the following equations (hint: use Rcos or Rsin):
(a) $6 \sin x+8 \cos x=5$
(b) $7 \sin x-24 \cos x-10=0$
(c) $\cos 2 x+4 \sin 2 x=3$
(d) $5 \sin x-8 \cos x+7=0$

Part D: Sketch the following functions giving the coordinates of any intercepts with the coordinate axes.
(a) $y=1-e^{-x}$
(b) $y=2 \ln (x-2)$
(c) $y=\left(e^{x} e^{2}\right)$
(d) $y=2-\ln x$

FOCUS from C3 Mock Exam

MEA) Given that $\sin x(\cos y+2 \sin y)=\cos x(2 \cos y-\sin y)$, find the value of $\tan (x+y)$.

MEB) Given that $p=2 \cos \theta$ and $q=\cos 2 \theta$, express q in terms of p.

MEC) Prove that $(\cos 2 \theta-\sin 2 \theta)^{2} \equiv 1-\sin 4 \theta$

Current 1: C4 Partial Fractions \& Binomial Expansion

1. Put the following into partial fractions:
(a) $\frac{4 x+1}{(x+1)(2 x-1)}$
(b) $\frac{4}{\left(x^{2}-4\right)}$
(c) $\frac{x^{3}}{x^{2}-1}$
2. $\mathrm{f}(x)=(3+2 x)^{-3},|x|<\frac{3}{2}$.

Find the binomial expansion of $\mathrm{f}(x)$, in ascending powers of x, as far as the term in x^{3}.
Give each coefficient as a simplified fraction.
3. (a) Expand $(1-2 x)^{\frac{1}{2}},|x|<\frac{1}{2}$, in ascending powers of x up to and including the term in x^{3}.
(b) By substituting a suitable value of x into your expansion, find an estimate for $\sqrt{0.98}$
(c) Show that $\sqrt{0.98}=\frac{7}{10} \sqrt{2}$ and hence find the value of $\sqrt{2}$ correct to 8 significant figures.

Current work 2: Mechanics M2

Appropriate accuracy for final answer when using $g=9.8$ is 2 sig figs
For example: from your calculator write answer as 5.43 and then your final answer as 5.4 stating (to 2sf) with units of course.
Give angles in general to 1dp
Provide a good sized diagram, use a ruler, avoid units on the diagram
4. An arrow is fired from a bow with a speed of $50 \mathrm{~ms}^{-1}$ at an angle of 5° above the horizontal.
(a) Calculate the height of the arrow after 0.6 s .
(b) What is its speed after 6 s ?
(c) Find the acute angle that the arrow makes with the horizontal after 6 s?
5. A bowler releases a cricket ball from a height of 2.25 m above a horizontal cricket pitch so that initially its path is horizontal.
(a) Find the speed of delivery if it is to hit the ground a horizontal distance of 16 m from the point of release.
(b) Find the speed that the ball hits the ground.

Next ball, the bowler again releases the ball from a height of 2.25 m , but at a speed of $28 \mathrm{~ms}^{-1}$ at an angle of 4^{0} below the horizontal.
(c) Find the time taken for the ball to first hit the ground.
(d) Find the horizontal distance travelled when the ball first hits the ground.
6. Karen is standing 4 m away from a wall which is 2.5 m high. She throws a ball at $10 \mathrm{~ms}^{-1}$ at an angle of 40° to the horizontal, releasing the ball from a height of 1 m above the ground. Will the ball pass over the wall? Fully justify your answer.
7. Given that $f(x)=3 \ln x+\frac{1}{x}, x>0$, find the equation of the normal to this curve at $x=1$.
8. Solve the following equations on the interval $0 \leq \theta \leq 2 \pi$. Where possible, give exact answers.

Otherwise give your answers to 3sf:
(a) $\quad 2 \cos x-\sin x=1 \quad[$ Hint: $R \cos (x+\alpha)]$
(b) $3 \sin 2 x=\sin x$
9. Prove the following identities: set these out correctly
(a) $\cot A-\tan A \equiv 2 \cot 2 A$
(b) $\sin ^{2} x\left(1+\sec ^{2} x\right) \equiv \sec ^{2} x-\cos ^{2} x$
10. The function f is defined by $\mathrm{f}: x \rightarrow|2 x-a|, x \in \mathbb{R}$, where a is a positive constant.
(a) Sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of the points where the graph cuts the axes.
(b) On a separate diagram, sketch the graph of $y=\mathrm{f}(2 x)$, showing the coordinates of the points where the graph cuts the axes.
(c) Given that a solution of $\mathrm{f}(x)=\frac{1}{2} x$ is $x=4$, find the two possible values of a
11. (a) Given $f(x)=\frac{x}{x+3}-\frac{x+24}{2 x^{2}+5 x-3}$, show that $f(x)=\frac{2(x-4)}{2 x-1}$
(b) Find $f^{-1}(x)$
12. Solve the following functions
(a) $3 e^{2 x+5}=4$
(b) $3^{x}=5^{1-x}$
(c) $2 \ln (2 x-1)=1+\ln 7$
13. $f(x)=x^{3}-\frac{1}{x}-2, x \neq 0$
(a) Show that the equation has a root between 1 and 2 .
(b) Re-arrange $f(x)=0$ to make an iteration formula in the form $x_{n+1}=\left(a+\frac{b}{x_{n}}\right)^{c}$, where a,b,c are rational numbers to be found
(c) Find an approximation of the root by selecting an appropriate value for x_{0} and calculating $x_{1}, x_{2}, x_{3}, x_{4}$ to 4 decimal places.
(d) Show that $\mathrm{x}=1.395$ is the root correct to 3 decimal places
14. For this question decide which of the responses given is (are) correct then choose

A if 1,2 and 3 are correct
B if only 1 and 2 are correct
C if only 2 and 3 are correct
D if only 1 is correct
E if only 3 is correct
Given that $\tan (\mathrm{x} / 2)=\mathrm{t}$, then

1. $\cos x=\frac{1-t^{2}}{1+t^{2}}$
2. $\sin x=\frac{2 t}{1-t^{2}}$
3. $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2}{1-\mathrm{t}^{2}}$

Preparation: Learning Integration techniques is a vital part of the C 4 module
Read about Integration using Trig and Partial Fractions old C4 textbook pages 82-94 and new textbook pages 87-100.

