A2 Assignment theta Cover Sheet

Question		Oٍ	会		Topic	Comment
高	Aa				C4 Integration as the reverse of differentiation	$\frac{1}{4} e^{x}+\frac{3}{4} x+c$
	Ab				C4 Integration as the reverse of differentiation	$3 e^{x}-2 \ln \|x\|+c$
	Ac				C4 Integration as the reverse of differentiation	$-\frac{3}{4} \ln \|x\|+\mathrm{c}$
	Ba				C3 Rcos	$\mathrm{R}=5, \alpha=0.64$
	Bb				C3 Rcos	$\mathrm{R}=13, \alpha=0.39$
	Bc				C3 Rcos	$\mathrm{R}=\sqrt{2}, \alpha=0.79$
	Ca				C3 Sketch, domain and range	$\mathrm{f} \in \mathrm{R}: \mathrm{f}=1$
	Cb				C3 Sketch, domain and range	$\mathrm{g} \in \mathrm{R}: \mathrm{g}<1$
	Cc				C3 Sketch, domain and range	$h \in R$
	Da				C3 Sketching arccos, arcsin, arctan, domain and range	Use Autograph, your graphical calculator or Desmos to check
	Db				C3 Sketching arccos, arcsin, arctan, domain and range	Use Autograph, your graphical calculator or Desmos to check
	Dc				C3 Sketching arccos, arcsin, arctan, domain and range	Use Autograph, your graphical calculator or Desmos to check
	TT3A				Trig	$\begin{aligned} \cos (\theta-\theta) & \equiv \cos \theta \cos \theta+\sin \theta \sin \theta \\ & \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta \equiv 1 \text { as } \cos \theta=0 \end{aligned}$
	TT3Bi				Trig	$\sin 35^{\circ}$
	TT3Bii				Trig	$\cos 7 \theta$
	TTCBiii				Trig	$\tan 5 \theta$
	TT3Ci				Differentiation	$\mathrm{e}^{2 x}(2 \cos x-\sin x)$
	TT3Cii				Differentiation	$\mathrm{e}^{x} \sec 3 x(1+3 \tan 3 x)$
	TT3Ciii				Differentiation	$\frac{\mathrm{e}^{\sin x}\left(\cos ^{2} x+\sin x\right)}{\cos ^{2} x}$
	TT3Di				Trig	$\frac{1}{\sqrt{1+q^{2}}}$
	TT3Dii				Trig	$\frac{\frac{1}{q}+1}{1-\frac{1}{q}}$
	TT3Diii				Trig	$\frac{q}{q+1}$
$\begin{aligned} & \text { n } \\ & \text { B } \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1a				C4 partial fractions	$\frac{4}{(2 x+1)}-\frac{1}{(x-3)}$
	1b				C4 partial fractions	$\frac{1}{(x+2)}+\frac{1}{(x+2)^{2}}+\frac{1}{(x+2)^{3}}$
	1c				C4 partial fractions	$1-\frac{2}{(x-2)}+\frac{3}{(x+1)}$
	2				C4 Binomial expansion (simple)	$2-\frac{9}{4} x-\frac{81}{64} x^{2}-\frac{729}{512} x^{3}$
	3a				C4 Binomial expansion (simple)	$\frac{1}{2}\left[1+\frac{3}{8} x+\frac{27}{128} x^{2}+\ldots\right]$

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"Music is the pleasure the human soul experiences from counting without being aware that it is counting"
G W Leibnitz

A2 Maths with Mechanics Assignment Θ (theta) Due in the week after Reading week w/b 21/11

Drill

Part A Integrate* the following functions with respect to x :
(a) $\frac{\mathrm{e}^{x}+3}{4}$
(b) $\frac{3 x \mathrm{e}^{x}-2}{x}$
(c) $-\frac{3}{4 x}$
*always use the correct notation when integrating and the constant for indefinite integration
Part B Write in the form indicated giving α as an acute angle in radians to 2 dp :
(a) $4 \sin x-3 \cos x$
$R \sin (x-\alpha)$
(b) $\quad 12 \sin x+5 \cos x$ $R \sin (x+\alpha)$
(c) $\cos x+\sin x$
$R \cos (x-\alpha)$

Part C Sketch and state the ranges of the following functions (defined on \mathbb{R}): show asymptotes clearly
(a)
$f(x)=\frac{1}{x+2}+1$
(b) $\quad g(x)=1-e^{2 x}$
(c) $\quad h(x)=\ln (1+x)$

Part D Sketch the following functions stating the domain and range in each case.
(a) $y=2-\arcsin (3 x)$
(b) $y=3+2 \arccos x$
(c) $y=-\arctan \left(\frac{1}{2} x\right)$
*note in the specifications arcsin is used, not $\sin ^{-1} \mathbf{x}$ as on your calculators

FOCUS from C3 Mock exam

Learning trig formula is vital unless you know the trig formula you will not recognise them in questions

TT3A) Using the expansion of $\cos (A-B)$ with $A=B=\theta$, show that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$.

TT3B) Express the following as a single sine, cosine or tangent:
i) $\sin 15^{\circ} \cos 20^{\circ}+\cos 15^{\circ} \sin 20^{\circ}$
ii) $\cos 4 \theta \cos 3 \theta-\sin 4 \theta \sin 3 \theta$
iii) $\frac{\tan 2 \theta+\tan 3 \theta}{1-\tan 2 \theta \tan 3 \theta}$

Write these out as many times as you need to remember them

Trig Identity table
$\sin 2 x=$
$\cos 2 x=$
$\cos 2 x=$
$\cos 2 x=$
$\tan 2 x=$
$\sec ^{2} x=$
$\operatorname{cosec}^{2} x=$
$\sin ^{2} x=$
$\cos ^{2} x=$
$\tan (A-B)=$

Trig Identity table
$\sin 2 x=2 \sin x \cos x$
$\cos 2 x=2 \cos ^{2} x-1$
$\cos 2 x=1-2 \sin ^{2} x$
$\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\sec ^{2} x=1+\tan ^{2} x$
$\operatorname{cosec}^{2} x=1+\cot ^{2} x$
$\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$
$\sin (A-B)=$
$\cos (A-B)=$
$\sin P+\sin Q=$
$\sin P-\sin Q=$
$\cos P+\cos Q=$
$\cos P-\cos Q=$
$\cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2$
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\sin P+\sin Q=2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right)$
$\sin P-\sin Q=2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)$
$\cos P+\cos Q=2 \cos \left(\frac{P+Q}{2}\right) \cos \left(\frac{P+Q}{2}\right)$
$\cos P-\cos Q=-2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)$

TT3C) Find the function $\mathrm{f}^{\prime}(x)$ where $\mathrm{f}(x)$ is
i) $\mathrm{e}^{2 x} \cos x$
ii) $\mathrm{e}^{x} \sec 3 x$
iii) $\frac{e^{\sin x}}{\cos x}$

TT3D) Given cotx $=q$ find in terms of q i) $\sin x$ ii) $\tan (x-45)$ iii) $\cot 2 x$

Current work: Partial fractions, binomial expansion

1. Express the following as partial fractions
(a) $f(x)=\frac{2 x-13}{(2 x+1)(x-3)}$
(b) $f(x)=\frac{x^{2}+5 x+7}{(x+2)^{3}}$
(c) $f(x)=\frac{x^{2}-10}{(x-2)(x+1)} *$

* this is an improper fraction

2. Use the binomial theorem to expand

$$
\sqrt{ }(4-9 x), \quad|x|<\frac{4}{9},
$$

in ascending powers of x, up to and including the term in x^{3}, simplifying each term.
3. (a) Expand $\frac{1}{\sqrt{4-3 x}}$, where $|x|<\frac{4}{3}$, in ascending powers of x up to and including the term in x^{2}. Simplify each term.
(b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{4-3 x}}$ as a series in ascending powers of x.

Consolidation

4.

a) $\frac{\cos A}{\sin B}-\frac{\sin A}{\cos B} \equiv \frac{2 \cos (A+B)}{\sin 2 B}$
b) $\tan \frac{A}{2}+\cot \frac{A}{2} \equiv 2 \operatorname{cosec} A$
5. Prove that the equation $\frac{4 x+3}{2 x-1}+\frac{6 x+1}{2 x+1}=3$ has no real solutions.
6.

The diagram shows a sketch of the graph of $y=f(x)$.
The curve has a minimum at the point $A(1,-1)$ passed through x-axis at the origin, and the points $B(2,0)$ and C $(5,0)$; the asymptotes have equations $x=3$ and $y=2$.
(a) Sketch on separate axes, the graph of
(i) $y=|f(x)|$
(ii) $y=-f(x+1)$
(iii) $y=f(-2 x)$
(b) State the number of solutions to the equation
(i) $\quad 3|f(x)|=2$
(ii) $\quad 2|f(x)|=3$
7. Find the equations of the tangent and the normal to $y=\frac{x}{1-x}$ at the point $\left(\frac{1}{2}, 1\right)$. Where does the normal meet the curve again?
8. Find the coordinates of the stationary points on $y=\left(x^{2}-x-2\right)^{4}$
9. Given that $y=x e^{2 x}$, show that this curve has only one stationary point, find its coordinates and determine its nature.
10. Find the x coordinate of points on the curve $y=\frac{3 x^{2}+2}{2 x-3}$, where the gradient at these points is parallel to the line $y-x=0$.
11. A curve has the equation $x^{2}+2 y^{2}-x+4 y=6$
a) Show that $\frac{d y}{d x}=\frac{1-2 x}{4(y+1)}$
b) Find an equation for the normal to the curve at the point (1, -3)

Mechanics : M1 Practice (Preparation for M2)

12. A ball is thrown vertically upwards from a height 1.6 m above the ground, with a speed of $7 \mathrm{~m} \mathrm{~s}^{-1}$. Find:
a) The maximum height above the ground.
b) The speed when it hits the ground.

Challenge Question

A company logo has centrally-symetric white cross of width $\sqrt{2}$ on a dark circle. The dark corner pieces have side length 1 as indicated. What is the total area of the corners?

Preparation: Learning Integration techniques is a vital part of the C4 module Read about Integration using Trig and Partial Fractions old C4 textbook pages 82-94 and new textbook pages 87-100.

