
| Qu     | Question   |  | Back | Торіс                                          | Comment                                                                                                                             |
|--------|------------|--|------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Drill  | Aa)        |  |      | C4 Integration Reverse chain                   | $\frac{1}{6}(2x-1)^3 + c$                                                                                                           |
|        | Ab)        |  |      | C4 Integration Inspection                      | $\frac{\frac{1}{6}(2x-1)^3 + c}{\frac{1}{2}x^2 - \frac{1}{2}\sec 2x + c}$                                                           |
|        | Ac)        |  |      | C4 Integration Inspection                      | $\frac{1}{2}\ln x + c$                                                                                                              |
|        | Ba)        |  |      | C3 Differentiation – product rule & chain rule | $\frac{1}{3e^{5x}(1+5x)}$                                                                                                           |
|        | Bb)        |  |      | C3 Differentiation – product rule & chain rule | $-e^{-3x}(3\cot x + \csc^2 x)$                                                                                                      |
|        | Bc)        |  |      | C3 Differentiation – product rule & chain rule | $ \frac{\ln(2-x) - \frac{x}{2-x}}{2x^{-1}\ln 3x} \\ \frac{1}{f^{-1}(x) = 1 + \sqrt{x-4}} \\ \frac{1}{f^{-1}(x) = -2 + \sqrt{x+5}} $ |
|        | Bd)        |  |      | C3 Differentiation – product rule & chain rule | $2x^{-1}\ln 3x$                                                                                                                     |
|        | Ca)        |  |      | C3 Functions – Inverse, domain and range       | $f^{-1}(x) = 1 + \sqrt{x - 4}$                                                                                                      |
|        | Cb)        |  |      | C3 Functions – Inverse, domain and range       | $f^{-1}(x) = -2 + \sqrt{x+5}$                                                                                                       |
|        | Cc)        |  |      | C3 Functions – Inverse, domain and range       | $f^{-1}(x) = \sqrt{x+4} - 2$                                                                                                        |
|        | Da)        |  |      | C3 Trig equations                              | $\frac{\pi}{3}, \frac{5\pi}{3}, 1.82, 4.46$                                                                                         |
|        | Db)        |  |      | C3 Trig equations                              | $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}$  |
|        | TT1A       |  |      |                                                |                                                                                                                                     |
|        | TT1B       |  |      |                                                |                                                                                                                                     |
|        | TT1C       |  |      |                                                |                                                                                                                                     |
| nt<br> | TT1D<br>1a |  |      | C3 Differentiation – all types                 | $\cos x \ln 2x + \frac{1}{x} \sin x$                                                                                                |
|        | 1b         |  |      | C3 Differentiation – all types                 | $\frac{x}{36x \sec(6x^2+5)\tan(6x^2+5)}$                                                                                            |
|        | 1c         |  |      | C3 Differentiation – all types                 | $-3\cos^5\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)$                                                                      |
|        | 1d         |  |      | C3 Differentiation – all types                 | $e^{2x}(2\ln 2x + x^{-1})$                                                                                                          |
|        | 1e         |  |      | C3 Differentiation – all types                 | $2x \sec^2(x^2+3)$                                                                                                                  |
|        | 1f         |  |      | C3 Differentiation – all types                 | $4 \sec^2 2x \tan 2x$                                                                                                               |
|        | 1g         |  |      | C3 Differentiation – all types                 | $\frac{5}{x}$                                                                                                                       |
|        | 1h         |  |      | C3 Differentiation – all types                 | $4 - \frac{1}{4}e^x$                                                                                                                |
|        | 1i         |  |      | C3 Differentiation – all types                 | $-\frac{2}{x^3}-\frac{3}{x^4}$                                                                                                      |
|        | 1j         |  |      | C3 Differentiation – all types                 | $\frac{1}{x}$                                                                                                                       |
|        | 1k         |  |      | C3 Differentiation – all types                 | $2e^x - \frac{4}{x}$                                                                                                                |

| C3 Differentiation – all types                     | $\frac{1}{\left(1-\sin x\right)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C3 Differentiation – all types                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    | $e^{x}(x\ln x-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | $\frac{\frac{c}{x(\ln x)^2}}{x(\ln x)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C2 Differentiation all types                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C5 Differentiation – an types                      | $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C3 Differentiation – all types                     | <u>x</u><br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | $\frac{5}{2x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C3 e and natural log equations                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    | $\frac{1}{6}(e-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C3 e and natural log equations                     | $\frac{1}{3}(\ln 2 + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    | 2 ln 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C3 e and natural log equations                     | $\frac{1}{3}(\ln 28 - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C3 Differentiation – stationary points and tangent | $\left(e^{-\frac{1}{2}}, -0.5e^{-1}\right)$ $y = 3ex - 2e^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C3 Differentiation –tangent and triangle           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                    | $\frac{1}{4e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                    | <i>k</i> = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | Proof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| _                                                  | $f \in \mathfrak{R} : f \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C3 Functions – inverse & domain                    | $f^{-1}(x) = \frac{4-x}{2x}, x \in \Re : x \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C3 Functions – inverse & range                     | $f^{-1}(x) > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C3 Trig identities                                 | PROOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C3 Trig identities                                 | PROOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C3 Algebraic fractions                             | 2 <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                    | $\overline{x-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M1 Force diagrams with friction.                   | (a) 820 N (b) 870 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Diff eq                                            | 5.9 mins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Circles inscribed in a triangle.                   | 1:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    | C3 e and natural log equations         C3 Differentiation – stationary points and tangent         C3 Differentiation – tangent and triangle         C2 Integration         C3 Algebraic fractions         C3 Functions - range         C3 Functions – inverse & domain         C3 Trig identities         C3 Trig identities         C3 Algebraic fractions         M1 Force diagrams with friction.         Diff eq |



"The mathematician's patterns, like the painter's or the poet's, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test."

G H Hardy

## A2 Maths with Mechanics Assignment $\varepsilon$ (epsilon) due in w/b 17/10

Maths Trip: Maths In Action University Lectures in London. £20 a ticket (10 tickets available) 15<sup>th</sup> November Maths Trip: Maths In Action University Lectures in London. £20 a ticket (10 tickets available) 14<sup>th</sup> December

#### Drill

**Part A** Integrate the following with respect to *x*:

(a)  $(2x-1)^2$  (b)  $x - \sec 2x \tan 2x$  (c)  $\frac{1}{2x}$ 

Part B Find:

(a) 
$$\frac{\mathrm{d}}{\mathrm{d}x} (3xe^{5x})$$
 (b)  $\frac{\mathrm{d}}{\mathrm{d}x} (e^{-3x} \cot x)$  (c)  $\frac{\mathrm{d}}{\mathrm{d}x} (x \ln(2-x))$ 

(d)  $\frac{\mathrm{d}}{\mathrm{d}x} ((\ln 3x)^2)$ 

**Part C** Find the equations of the inverses of the following functions where each function is defined on its given domain, stating the domain and range of the new inverse functions:

- (a)  $f(x) = (x-1)^2 + 4$ ,  $x \ge 1$  (b)\*  $f(x) = x^2 + 4x 1$ ,  $x \ge -2$
- (c)\*  $f(x) = x^2 + 4x, x \ge -2$  \*complete the square first

**Part D** Solve the following equations on the interval  $0 \le \theta \le 2\pi$ . Give exact answers where you can, but otherwise give your answers to 3sf:

(a)  $\tan^2 \theta + 2 \sec \theta = 7$  (b)  $\csc^2 2\theta = 2$ 

# TT1 FOCUS: A)

B)

C)

D)

#### **Current Work:**

1. Differentiate these functions with respect to *x*:

(a) 
$$y = \sin x \ln 2x$$
 (b)  $y = 3 \sec(6x^2 + 5)$  (c)  $y = \cos^6\left(\frac{x}{2}\right)$   
(d)  $y = e^{2x} \ln 2x$  (e)  $y = \tan\left(x^2 + 3\right)$  (f)  $y = \sec^2 2x$   
(g)  $y = 5\ln x$  (h)  $y = 4x - \frac{1}{4}e^x$  (i)  $y = \frac{x+1}{x^3}$   
(j)  $y = \ln 8x$  (k)  $y = 2e^x - 2\ln x^2$  (l)  $y = \frac{3x}{1 - \sin x}$   
(m)  $y = \frac{e^x}{\ln x}$  (n)  $y = 3\ln x - \ln 3x$  (o)  $y = \ln \sqrt{x} - 2\ln(\frac{1}{x})$ 

- 2. Find the exact value(s) of *x* which satisfy the equations:
  - ln(6x + 1) = 1  $e^{2x} = e^{x} + 12$  (b)  $e^{3x-1} = 2$   $e^{2x} e^{x+1} = 28$ (a) (c)
- The curve with equation  $y = x^2 \ln x$  is defined for positive values of x. Determine the coordinates of the stationary 3. point and find the equation of the tangent at the point  $(e, e^2)$
- The curve C with equation  $y = e^{2x-1}$  meets the y axis at P. The tangent to C at P crosses the x axis at Q. Find the 4. area of the triangle *POQ* where *O* is the origin.

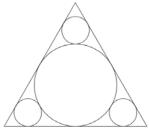
#### **Consolidation:**

Given that  $\int_{2}^{4} (3t^2 - 2t - kt^{-2}) dt = 40$ , find the value of the constant k. 5.

6. Given that 
$$f(x) = \frac{2}{x-1} - \frac{6}{(x-1)(2x+1)}, x > 1$$
,

- Prove that  $f(x) = \frac{4}{2x+1}$ (a) Find the range of f. (b)
- State the range of  $f^{-1}(x)$ . Find  $f^{-1}(x)$  and state its domain. (c) (d)
- 7. Prove the following identities:  $\frac{\sin x}{1 - \cos x} \equiv \cot \frac{x}{2}$ (a) (b)

$$\sin(A+B) + \sin(A-B) \equiv 2\sin A \cos B$$


8. Express 
$$\frac{x^2 - 8x + 15}{x^2 - 9} \times \frac{2x^2 + 6x}{(x - 5)^2}$$
 as a single fraction in its simplest form.

### M1 Practice (Preparation for M2)

- 9. A sledge of mass 150 kg is being held on a snowy slope by a rope parallel to the slope. If the slope makes an angle of 35° to the horizontal and the coefficient of friction is 0.02, what is the least force needed to a) hold it stationary b) start it moving up the slope.
- 10. A beaker of liquid is heated and then allowed to cool. The temperature of the liquid,  $\theta^{\circ}$ C, is related to the time, t minutes, for which it has been cooling by the equation  $0 - 15 + (5e^{-0.2t})$  Colorate here long it takes the liquid to cool to 25%C, giving your ensurement is minutes.

 $\theta = 15 + 65e^{-0.2t}$ . Calculate how long it takes the liquid to cool to 35°C, giving your answer, in minutes, correct to 2sf.

#### Challenge



11. A circle is inscribed in an equilateral triangle. Small circles are then inscribed in each corner as shown. What is the ratio of the area of a small circle to the area of the large circle?

**Preparation: Read\*** about Inverse Trig Functions. C3 new textbook pages 98-102, C3 old textbook pages 87-91.

\* you are not expected to work through questions in this preparation section but read the textbook to understand the topic.