A2 Assignment delta Cover Sheet

Question		\#10	荷	Topic	Answers
帚	Aa)			C3 Differentiation trig - given $\mathrm{x}=$, find dy/dx	$\frac{d y}{d x}=\frac{1}{\text { secytany }}$
	Ab)			C3 Differentiation trig - given $\mathrm{y}=$, find dy/dx	$\frac{d y}{d x}=\sec ^{2} x-\operatorname{cosec}^{2} x$
	Ac)			C3 Differentiation trig - given $\mathrm{x}=$, find dy/dx	$\frac{d y}{d x}=\frac{1}{2 y \cos y-y^{2} \sin y}$
	Ad)			C3 Differentiation trig - given $\mathrm{y}=$, find dy/dx	$\frac{d y}{d x}=\frac{\sin x-x \cos x}{\sin ^{2} x}$
	Ba)			C3 Algebraic Long Division	$x^{2}+3 x+6+\frac{2}{x-1}$
	Bb)			C3 Algebraic Long Division	$2 x^{2}-3 x+5-\frac{10}{x+3}$
	Bc)			C3 Algebraic Long Division	$x^{2}+2-\frac{6}{x^{2}+1}$
	Ca)			C3 Functions - Graph Transformations/Sketching	Check using google - inc asymptotes
	Cb)			C3 Functions - Graph Transformations/Sketching	Check using google - inc asymptotes
	Cc)			C3 Functions - Graph Transformations/Sketching	Check using google - inc asymptotes
	Da)			C4 Integration - Reverse Chain Rule	$\frac{1}{5}(x-3)^{5}+c$
	Db)			C4 Integration - Reverse Chain Rule	$\frac{3}{2} \sin (2 x+4)+c$
	Dc)			C4 Integration - Reverse Chain Rule	$\cos (\pi-x)+c$
	1a			C3 Functions - Graph Sketching with domain/range	Check using google - inc asymptotes
	1b			C3 Functions - Graph Sketching with domain/range	Check using google - inc asymptotes
	2a			C3 Functions - Composite Functions	10
	2b			C3 Functions - Composite Functions	17
	2c			C3 Functions - Composite Functions	26
	2d			C3 Functions - Composite Functions	$(x+3)^{2}+1$
	2e			C3 Functions - Composite Functions	$x^{2}+4$
	2f			C3 Functions - Composite Functions	$\left(x^{2}+1\right)^{2}+1$
	3a			C3 Functions - Composite Functions working backwards	$\mathrm{fg}(\mathrm{x})$
	3b			C3 Functions - Composite Functions working backwards	$\mathrm{hg}(\mathrm{x})$ or gh(x)
	3c			C3 Functions - Composite Functions working backwards	gf(x)
	3d			C3 Functions - Composite Functions working backwards	$\mathrm{fh}(\mathrm{x})$
	3e			C3 Functions - Composite Functions working backwards	$f^{2}(x)$
	3f			C3 Functions - Composite Functions working backwards	$h^{2}(x)$
	3 g			C3 Functions - Composite Functions working backwards	$g^{2}(x)$
	3h			C3 Functions - Composite Functions working backwards	hgf(x) or ghf(x)
	4a			C3 Functions - quadratic find range	Range f\&R: $f \geq-1$
	4b			C3 Functions - quadratic find range	Range gER: $f \geq-3$

	4c				C3 Functions - quadratic, find domain/range to make one to one	One to one from max point. Domain $h \in \mathbb{R}: h \geq \frac{5}{2}$ Range hहR: $h \leq \frac{25}{4}$
	5a				C3 Differentiation trig - given $\mathrm{x}=$, find dy/dx	$\frac{d y}{d x}=-\operatorname{cosec} y$
	5b				C3 Differentiation trig - given $\mathrm{x}=$, find dy/dx	$\frac{d y}{d x}=\frac{1}{2} \cos 2 y \cot 2 y$
	5c				C3 Differentiation trig - given $\mathrm{x}=$, find dy/dx	$\frac{d y}{d x}=\frac{2 \sqrt{y}}{1+2 \sqrt{y}}$
	6a				C4 Integration - Reverse Chain Rule	$\tan 3 x+c$
	6b				C4 Integration - Reverse Chain Rule	$\frac{-1}{2}(2 x-1)^{-1}+c$
	6 c				C4 Integration - Reverse Chain Rule	$-\frac{1}{2} \cot 2 x+c$
	7a				C3 Trig Proof	PROOF
	7b				C3 Trig Proof	PROOF
	8				Find distance of point from tangent to axes	Use Sketch to help!
	9					$3 x\left(3 x^{3}+2\right) e^{x^{3}}$
華	10				M1 SUVAT with friction	4.3
					Cube inscribed inside Sphere.	$2 \mathrm{~m}^{2}$

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else" P Kraft

A2 Maths with Mechanics Assignment γ (gamma) due w/b 16/10

Drill

Part A Find dy/dx of the following functions, using appropriate notation:
(a) $x=\sec y$
(b) $y=\sec x \operatorname{cosec} x$
(c) $x=y^{2} \cos y$
(d) $y=\frac{x}{\sin x}$

Part B Use algebraic division to express these improper fractions in the form

$$
a x^{2}+b x+c+\frac{R}{\text { divisor }}
$$

(a) $\frac{x^{3}+2 x^{2}+3 x-4}{x-1}$
(b) $\frac{2 x^{3}+3 x^{2}-4 x+5}{x+3}$
(c) $\frac{x^{4}+3 x^{2}-4}{x^{2}+1}$

Part C Sketch these curves (a is an arbitrary positive constant):
(a) $y=a-\frac{1}{x}$
(b) $y=-(x-a)^{3}$
(c) $y=a+a^{-x}$

Part D Integrate the following with respect to x using appropriate notation:
(a) $(x-3)^{4}$
(b) $3 \cos (2 x+4)$
(c) $\sin (\pi-x)$

Current work

1. On the same set of axes, sketch the following functions (with their domains restricted as required) and state their ranges:
(a) $\quad f(x)=2 x+1$
$x \in \mathbb{R}$
(b) $\quad g(x)=(x-2)^{2} \quad x \in \mathbb{R}, x>2$
2. The functions f and g are defined on the whole of \mathbb{R} by $f(x)=x^{2}+1, g(x)=x+3$.

Find:
(a) $\quad f g(0)$
(b) $\quad f g(1)$
(c) $\quad f^{2}(2)$
(d) $\quad f g(x)$
(e) $\quad g f(x)$
(f) $\quad f f(x)$
3. For the functions $f(x)=x+2, g(x)=x^{-1}, h(x)=x^{2}$ defined on $x \in \mathbb{R} \quad x \neq 0$, state the compositions of functions which correspond to:
(a) $\frac{1}{x}+2$
(b) $\frac{1}{x^{2}}$
(c) $\frac{1}{x+2}$
(d) $x^{2}+2$
(e) $x+4$
(f) $\quad x^{4}$
(g) x
(h) $\frac{1}{(x+2)^{2}}$
4. Sketch the following functions on the given domain and hence find their ranges:
(a) $\quad f(x)=x^{2}+4 x+3 \quad$ Domain $\mathrm{f}: x \in \mathbb{R}$
(b) $\quad g(t)=2 t^{2}-4 t-1 \quad$ Domain $g: t \in \mathbb{R}$

Make the following a one to one function and state its domain and range and sketch it.
(c) $\quad h(x)=5 x-x^{2}$

Consolidation

5. Find $\frac{d y}{d x}$ in terms of y.
(a) $x=\cos y$
(b) $\quad x=\sec 2 y$
(c) $x=y+\sqrt{y}$
6. Integrate the following functions by working out what has been differentiated:
(a) $\int 3 \sec ^{2} 3 x d x$
(b) $\int(2 x-1)^{-2} d x$
(c) $\int \operatorname{cosec}^{2} 2 x d x$
7. Prove the following identities
(a) $\quad(1+\tan x)\left(1+\tan \left(\frac{\pi}{4}-x\right)\right) \equiv 2$
(b) $\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x$
8. The tangent to the curve with equation $y=\tan 2 x$ at the point $x=\frac{\pi}{8}$ meets the y axis at the point Y. Show that the exact distance $O Y$ (where O is the origin) is $\frac{\pi}{2}-1$.
9. Find the second derivative of $e^{x^{3}}$

M1 (Practice for M2)

10. A particle of mass 1 kg is projected at $5 \mathrm{~ms}^{-1}$ along a rough horizontal surface. The coefficient of friction is 0.3 . How far does the particle move before coming to rest?

Are you up for a challenge? Then try this question:

A cube is inscribed inside a sphere of diameter $1 \mathrm{~m}^{2}$. What is the surface area of the cube?

