A2 Assignment delta Cover Sheet

Name:

Que	Question		Back	Торіс	Answers
Drill	Aa)			C3 Differentiation trig – given $x =$, find dy/dx	$\frac{dy}{dx} = \frac{1}{\sec y \tan y}$
	Ab)			C3 Differentiation trig – given y =, find dy/dx	$\frac{dy}{dx} = \frac{1}{secytany}$ $\frac{dy}{dx} = \sec^2 x - \csc^2 x$
	Ac)			C3 Differentiation trig – given x =, find dy/dx	$\frac{dy}{dx} = \frac{1}{2y\cos y - y^2\sin y}$
	Ad)			C3 Differentiation trig – given y =, find dy/dx	$\frac{dy}{dx} = \frac{\sin x - x \cos x}{\sin^2 x}$
	Ba)			C3 Algebraic Long Division	$x^2 + 3x + 6 + \frac{2}{x-1}$
	Bb)			C3 Algebraic Long Division	$2x^2 - 3x + 5 - \frac{10}{x + 3}$
	Bc)			C3 Algebraic Long Division	$2x^{2} - 3x + 5 - \frac{10}{x+3}$ $x^{2} + 2 - \frac{6}{x^{2} + 1}$
	Ca)			C3 Functions - Graph Transformations/Sketching	Check using google – inc asymptotes
	Cb)			C3 Functions - Graph Transformations/Sketching	Check using google – inc asymptotes
	Cc)			C3 Functions - Graph Transformations/Sketching	Check using google – inc asymptotes
	Da)			C4 Integration – Reverse Chain Rule	$\frac{1}{5}(x-3)^5+c$
	Db)			C4 Integration – Reverse Chain Rule	$\frac{3}{2}\sin(2x+4)+c$
	Dc)			C4 Integration – Reverse Chain Rule	$\cos(\pi - x) + c$
	1a			C3 Functions – Graph Sketching with domain/range	Check using google – inc asymptotes
	1b			C3 Functions – Graph Sketching with domain/range	Check using google – inc asymptotes
	2a			C3 Functions – Composite Functions	10
	2b			C3 Functions – Composite Functions	17
	2c			C3 Functions – Composite Functions	26
	2d			C3 Functions – Composite Functions	$(x+3)^2+1$
ork	2e			C3 Functions – Composite Functions	$x^2 + 4$
Current Work	2f			C3 Functions – Composite Functions	$(x^2+1)^2+1$
ren	3a			C3 Functions – Composite Functions working backwards	fg(x)
Curi	3b			C3 Functions – Composite Functions working backwards	hg(x) or gh(x)
	3c			C3 Functions – Composite Functions working backwards	gf(x)
	3d			C3 Functions – Composite Functions working backwards	fh(x)
	3e			C3 Functions – Composite Functions working backwards	$f^2(x)$
	3f			C3 Functions – Composite Functions working backwards	$h^2(x)$
	3g			C3 Functions – Composite Functions working backwards	$g^2(x)$
	3h			C3 Functions – Composite Functions working backwards	hgf(x) or ghf(x)
	4a			C3 Functions – quadratic find range	Range $f \in \mathbb{R}$: $f \ge -1$
	4b			C3 Functions – quadratic find range	Range gER: $f \ge -3$
			1 1	<u> </u>	, ,

	4c	C3 Functions – quadratic, find domain/range to make one to one	One to one from max
			point.
			Domain hER: $h \ge \frac{5}{2}$
			Range hER: $h \leq \frac{25}{4}$
	5a	C3 Differentiation trig – given $x =$, find dy/dx	$\frac{dy}{dx} = -\cos cy$
	5b	C3 Differentiation trig – given x =, find dy/dx	$\frac{dy}{dx} = \frac{1}{2}\cos 2y \cot 2y$
	5c	C3 Differentiation trig – given x =, find dy/dx	$\frac{dy}{dx} = \frac{2\sqrt{y}}{1 + 2\sqrt{y}}$
	6a	C4 Integration – Reverse Chain Rule	$\tan 3x + c$
	6b	C4 Integration – Reverse Chain Rule	$\frac{-1}{2}(2x-1)^{-1}+c$
	6c	C4 Integration – Reverse Chain Rule	$-\frac{1}{2}\cot 2x + c$
	7a	C3 Trig Proof	PROOF
	7b	C3 Trig Proof	PROOF
	8	Find distance of point from tangent to axes	Use Sketch to help!
	9		$3x(3x^3+2)e^{x^3}$
M1 Practice	10	M1 SUVAT with friction	4.3
Challenge		Cube inscribed inside Sphere.	2m ²

A2 Maths with Mechanics Assignment γ (gamma) due w/b 16/10

Drill

Part A Find dy/dx of the following functions, using appropriate notation:

(a)
$$x = \sec y$$

(b)
$$y = \sec x \csc x$$

(c)
$$x = y^2 \cos y$$

(d)
$$y = \frac{x}{\sin x}$$

Part B Use algebraic division to express these improper fractions in the form

$$ax^2 + bx + c + \frac{R}{\text{divisor}}$$

(a)
$$\frac{x^3 + 2x^2 + 3x - 4}{x - 1}$$

(a)
$$\frac{x^3 + 2x^2 + 3x - 4}{x - 1}$$
 (b) $\frac{2x^3 + 3x^2 - 4x + 5}{x + 3}$ (c) $\frac{x^4 + 3x^2 - 4}{x^2 + 1}$

(c)
$$\frac{x^4 + 3x^2 - 4}{x^2 + 1}$$

Part C Sketch these curves (*a* is an arbitrary positive constant):

$$(a) y = a - \frac{1}{x}$$

$$y = a - \frac{1}{x}$$
 (b) $y = -(x - a)^3$ (c) $y = a + a^{-x}$

(c)
$$y = a + a^{-3}$$

Part D Integrate the following with respect to x using appropriate notation:

(a)
$$(x-3)^4$$

(b)
$$3\cos(2x+4)$$

(c)
$$\sin(\pi - x)$$

Current work

1. On the same set of axes, sketch the following functions (with their domains restricted as required) and state their ranges:

(a)
$$f(x) = 2x + 1$$

$$x \in \mathbb{R}$$

$$g(x) = (x-2)^2$$
 $x \in \mathbb{R}, x > 2$

- The functions f and g are defined on the whole of \mathbb{R} by $f(x) = x^2 + 1$, g(x) = x + 3. 2. Find:
 - fg(0)(a)
- (b)
- fg(1) (c) $f^{2}(2)$
- (d) fg(x)
- (e) gf(x) (f) ff(x)
- For the functions f(x) = x + 2, $g(x) = x^{-1}$, $h(x) = x^2$ defined on $x \in \mathbb{R}$ $x \neq 0$, state the compositions of functions 3. which correspond to:
 - (a) $\frac{1}{x} + 2$ (b) $\frac{1}{x^2}$ (c) $\frac{1}{x+2}$ (d) $x^2 + 2$

(e)	x+4

(f)

Sketch the following functions on the given domain and hence find their ranges: 4.

(a)
$$f(x) = x^2 + 4x + 3$$

Domain f: $x \in \mathbb{R}$

(b)
$$g(t) = 2t^2 - 4t - 1$$

Domain g: $t \in \mathbb{R}$

Make the following a one to one function and state its domain and range and sketch it.

(c)
$$h(x) = 5x - x^2$$

Consolidation

Find $\frac{dy}{dx}$ in terms of y. 5.

(a)
$$x = \cos y$$

(b)
$$x = \sec 2y$$

(b)
$$x = \sec 2y$$
 (c) $x = y + \sqrt{y}$

Integrate the following functions by working out what has been differentiated: 6.

(a)
$$\int 3\sec^2 3x dx$$

$$\int 3\sec^2 3x dx \qquad \qquad \text{(b)} \qquad \int \left(2x-1\right)^{-2} dx \qquad \qquad \text{(c)} \qquad \int \csc^2 2x dx$$

(c)
$$\int \csc^2 2x dx$$

7. Prove the following identities

(a)
$$\left(1 + \tan x\right) \left(1 + \tan\left(\frac{\pi}{4} - x\right)\right) \equiv 2$$

$$(1 + \tan x) \left(1 + \tan\left(\frac{\pi}{4} - x\right)\right) \equiv 2$$
 (b) $\sec^2 x - \csc^2 x \equiv \tan^2 x - \cot^2 x$

The tangent to the curve with equation $y = \tan 2x$ at the point $x = \frac{\pi}{8}$ meets the y axis at the point Y. Show that 8. the exact distance OY (where O is the origin) is $\frac{\pi}{2}$ -1.

Find the second derivative of e^{x^3} 9.

M1 (Practice for M2)

A particle of mass 1kg is projected at 5 ms⁻¹ along a rough horizontal surface. The coefficient of friction is 0.3. 10. How far does the particle move before coming to rest?

Are you up for a challenge? Then try this question:

A cube is inscribed inside a sphere of diameter 1m². What is the surface area of the cube?