Question		\#		Topic	Answers
帚	Aa)			differentiation	$-x \sin x+\cos x$
	Ab)			differentiation	$2 x \sec 3 x+3 x^{2} \sec 3 x \tan 3 x$
	Ac)			differentiation	$2 x \sec ^{2} 2 x-\tan 2 x$
					x^{2}
	Ad)			differentiation	$3 \sin ^{2} x \cos ^{2} x-\sin ^{4} x$
	Ba)			differentiation	$2 x \tan x-x^{2} \sec ^{2} x$
					$\tan ^{2} x$
	Bb)			differentiation	$\frac{1+\sin x}{\cos ^{2} x}$
	Bc)			differentiation	$\mathrm{e}^{2 x}(2 \cos x-\sin x)$
	Bd)			differentiation	$\mathrm{e}^{x} \sec 3 x(1+3 \tan 3 x)$
	$\mathrm{Ca})$			differentiation	$3 \cos 3 x-\sin 3 x$
					e^{x}
	Cb)			differentiation	$\mathrm{e}^{x} \sin x(\sin x+2 \cos x)$
	Cc)			differentiation	$\underline{\tan x-x \sec ^{2} x \ln x}$ (
					$x \tan ^{2} x$
	Cd)			differentiation	$\underline{e^{\sin x}\left(\cos ^{2} x+\sin x\right)}$
					$\cos ^{2} x$
$\begin{aligned} & \text { ün } \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1)			Algebraic fractions	2
					$x+2$
	2a)			Exponential functions	$\left(0, \mathrm{e}^{3}-1\right),\left(-\frac{3}{2}, 0\right), y=-1$
	2b)				$a=2, b=-1.5$
	3a)			Trig	Proof
	3b)				$x=2.4,5.5 \quad x=0.5,3.6$ ($1 \mathrm{~d} . \mathrm{p}$)
	4a)			Diffn normal to the curve	$3 \sin ^{2} x+6 x \sin x \cos x$
	4b)				$x+3 y-5 \pi=0$
	4c)				$\frac{25 \pi^{2}}{6}$
	5a)			Functions	Proof
	5b)				Proof
	5c)				$2 \pm \sqrt{19}$
	6)			Algebraic functions	$\begin{aligned} & \frac{(x-3)(x-5)}{(x-3)(x+3)} \times \frac{2 x(x+3)}{(x-5)^{2}} \\ & (3 \times \text { factorising }) \\ & =\frac{2 x}{x-5} \end{aligned}$
	7a)			Functions	

7b)					

						Meets x-axis: $\quad x=\frac{5}{3},(0) ; \quad x=\frac{7}{3},(0)$
						$\begin{aligned} V & =\int_{0}^{10} \pi y^{2} d x \\ & =\pi \int_{0}^{10} \frac{x}{x^{2}+1} d x \\ & \quad=\frac{1}{2} \pi\left[\ln \left(x^{2}+1\right)\right]_{0}^{10} \\ & =\frac{1}{2} \pi \ln 101 \\ & =7.25 \text { cubic units (} 3 \text { s.f.) } \end{aligned}$

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else" P Kraft

A2 Maths with Mechanics Assignment γ (gamma)
 due w/b 9/10

Drill

Part A Find the function $\mathrm{f}^{\prime}(x)$ where $\mathrm{f}(x)$ is:
a) $x \cos x$
b) $x^{2} \sec 3 x$
C) $\frac{\tan 2 x}{x}$
d) $\sin ^{3} x \cos x$

Part B Find the function $\mathrm{f}^{\prime}(x)$ where $\mathrm{f}(x)$ is:
a) $\frac{x^{2}}{\tan x}$
b) $\frac{1+\sin x}{\cos x}$
c) $\mathrm{e}^{2 x} \cos x$
d) $\mathrm{e}^{x} \sec 3 x$

Part C Find the function $\mathrm{f}^{\prime}(x)$ where $\mathrm{f}(x)$ is:
a) $\frac{\sin 3 x}{\mathrm{e}^{x}}$
b) $\mathrm{e}^{x} \sin ^{2} x$
c) $\frac{\ln x}{\tan x}$
d) $\frac{\mathrm{e}^{\sin }}{\cos x}$

Current work

1. Express $\frac{7 x}{x^{2}-3 x-10}+\frac{5}{5-x}$ as a single fraction in its simplest terms.
2. $\mathrm{f}(x)=\mathrm{e}^{2 x+3}-1, x \in \mathbb{R}$.
a) Sketch the curve with equation $y=\mathrm{f}(x)$, showing the coordinates of any points at which the curve meets the coordinate axes and the equation of the asymptote.

The curve with equation $y=\mathrm{f}(x)$ has a gradient of 8 at the point P.
The x-coordinate of P is $\ln a+b$, where $a \in \mathbb{Z}$ and $b \in \mathbb{Q}$.
b) Find the value of a and the value of b.
3. a) Use the definition of $\cot x$ in terms of $\sin x$ and $\cos x$, to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\cot x)=-\operatorname{cosec}^{2} x
$$

Given that $\mathrm{f}(x)=\cot x+3$,
b) solve $\mathrm{f}(x)+\mathrm{f}^{\prime}(x)=0$ for $0 \leq x<2 \pi$, giving your answers to one decimal place where appropriate.
4.

The diagram shows part of the curve with equation $y=3 x \sin ^{2} x$.
a) Find $\frac{d y}{d x}$.

The point P on the curve has x-coordinate $\frac{\pi}{2}$. The normal to the curve at the point P cuts the x axis at the point A and the y-axis at the point $B . O$ is the origin.
b) Find an equation for the normal to the curve at P, giving your answer in the form $a x+b y+c=0$, where $a, b \in \mathbb{Z}$.
c) Find the exact value of the area of the triangle $O A B$.
5.

$$
\begin{aligned}
& \mathrm{f}: x \rightarrow \frac{a}{x}, \quad x \in \mathbb{R}, x \neq 0, \\
& \mathrm{~g}: x \rightarrow a x+k, \quad x \in \mathbb{R},
\end{aligned}
$$

where a and k are positive constants.
a) Sketch the curve with equation $y=|\mathrm{f}(x)|$.

The line $y=\mathrm{g}(x)$ is a tangent to the curve $y=|\mathrm{f}(x)|$ at the point P, and cuts the curve $y=|\mathrm{f}(x)|$ at the point Q.
b) Show that $k=2 a$.

Given that $a=3$,
c) solve the equation $\operatorname{fg}(x)=g^{-1}(x)$, giving your answer in the form $a+b \sqrt{ } c$ where a, b and c are integers.
6. Express as a single fraction in its simplest form

$$
\frac{x^{2}-8 x+15}{x^{2}-9} \times \frac{2 x^{2}+6 x}{(x-5)^{2}}
$$

7. The function f is defined by

$$
\mathrm{f}: x \rightarrow|2 x-a|, \quad x \in \mathbb{R}
$$

where a is a positive constant.
(a) Sketch the graph of $y=\mathrm{f}(x)$, showing the coordinates of the points where the graph cuts the axes.
(b) On a separate diagram, sketch the graph of $y=\mathrm{f}(2 x)$, showing the coordinates of the points where the graph cuts the axes.
(c) Given that a solution of the equation $\mathrm{f}(x)=\frac{1}{2} x$ is $x=4$, find the two possible values of a.
8. Prove that

$$
\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \equiv \cos 2 \theta
$$

9. The function f , defined for $x \in \mathbb{R}, x>0$, is such that

$$
\mathrm{f}^{\prime}(x)=x^{2}-2+\frac{1}{x^{2}} .
$$

(a) Find the value of $\mathrm{f}^{\prime \prime}(x)$ at $x=4$.
(b) Given that $f(3)=0$, find $f(x)$.
(c) Prove that f is an increasing function.
10. The function f is given by

$$
\mathrm{f}: x \mapsto \ln (3 x-6), \quad x \in \mathbb{R}, \quad x>2
$$

(a) Find $\mathrm{f}^{-1}(x)$.
(b) Write down the domain of f^{-1} and the range of f^{-1}.
(c) Find, to 3 significant figures, the value of x for which $f(x)=3$.

The function g is given by

$$
\mathrm{g}: \mathrm{x} \mapsto \ln |3 \mathrm{x}-6|, \quad \mathrm{x} \in \mathbb{R}, \quad \mathrm{x} \neq 2
$$

(d) Sketch the graph of $y=g(x)$.
(e) Find the exact coordinates of all the points at which the graph of $y=g(x)$ meets the coordinate axes.

Are you up for a challenge? Then try this question:

The area enclosed by the curve

$$
y=\sqrt{\frac{x}{x^{2}+1}}
$$

the x-axis and the line $x=10$ is rotated through 360° about the x-axis.

Use the formula the volume of a solid $=\int_{0}^{10} \pi y^{2} d x$ to find the volume of the solid generated, giving the answer correct to 3 significant figures.

