Question		Done	Back pack	Торіс	Answers
П	Aa)			differentiation	$-x\sin x + \cos x$
	Ab)			differentiation	$2x \sec 3x + 3x^2 \sec 3x \tan 3x$
	Ac)			differentiation	$2x \sec^2 2x - \tan 2x$
				1100	x^2
	Ad)			differentiation	$\frac{3\sin^2 x \cos^2 x - \sin^4 x}{2}$
	Ba)			differentiation	$\frac{2x\tan x - x^2 \sec^2 x}{\tan^2 x}$
	Bb)			differentiation	$\frac{1+\sin x}{\cos^2 x}$
Dr	Bc)			differentiation	$e^{2x}(2\cos x - \sin x)$
	Bd)			differentiation	$e^x \sec 3x (1 + 3 \tan 3x)$
	Ca)			differentiation	$\frac{3\cos 3x - \sin 3x}{3\cos 3x - \sin 3x}$
				lifferentiation	e^{x}
	Cb)				$e^x \sin x (\sin x + 2\cos x)$
	Cc)			differentiation	$\frac{\tan x - x \sec^2 x \ln x}{\tan^2 x}$
	Cd)			differentiation	$\frac{x \tan^2 x}{e^{\sin x}(\cos^2 x + \sin x)}$
	0.07				$\frac{1}{\cos^2 x}$
	1)			Algebraic fractions	2
					$\overline{x+2}$
	2a)			Exponential functions	$(0, e^3 - 1), (-\frac{3}{2}, 0), y = -1$
	2b)				a = 2, b = -1.5
	3a)			Trig	Proof
	3b)				x = 2.4, 5.5 $x = 0.5, 3.6$ (1d.p)
Ä	4a)			Diffn normal to the curve	$3\sin^2 x + 6x\sin x\cos x$
Vor	4b)				$x + 3y - 5\pi = 0$
ent W	4c)				$\frac{25\pi^2}{6}$
Cur	5)			Exections	0 Droof
	5a)			Functions	Proof
	50) 5 c)				
	30)				$_{2\pm}\sqrt{19}$
	6)			Algebraic functions	$\frac{(x-3)(x-5)}{(x-3)(x+3)} \times \frac{2x(x+3)}{(x-5)^2}$
					$(3 \times \text{ factorising}) = \frac{2x}{x - 5}$
	7a)			Functions	$y = f(x) \qquad y$

7b)		y = f(2x) $ya\frac{a}{4} x$
7c)		$-(2x-a) = \frac{1}{x}$
		when $r = 4 \implies a - 8 = 2$; $a = 10$
		$\frac{1}{2r} = \frac{1}{r}$
		$2x - u - \frac{1}{2}x$
8)	Trig	when $x = 4$, $\Rightarrow 8 - a = 2$ $\therefore a = 6$ $\sin^2 \theta$ $(\sin^2 \theta)$
		$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \frac{1-\frac{\sin^2\theta}{\cos^2\theta}}{1+\frac{\sin^2\theta}{\cos^2\theta}} \left(\text{or } \frac{1-\frac{\sin^2\theta}{\cos^2\theta}}{\sec^2\theta} \text{ or equivalent} \right)$
		$\frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta} = \frac{\cos 2\theta}{1} = \cos 2\theta$
9a)	Functions	$\frac{\cos \theta + \sin \theta}{f'(x) = 2x - 2x - 3}$
		$= 8 - \frac{6}{24} = 7\frac{31}{32} (7.97)$
9b)		$f(x) = \frac{1}{3}x^3 - 2x - \frac{1}{x} (+C)$
		$0 = 9 - 6 - \frac{1}{3} + C$
		$C = -\frac{8}{3}$ (or -2.67)
9c)		$f'(x) > 0$ needed, or $f'(x) \ge 0$, or "as x increases, $f(x)$ increases"
		$f'(x) = (x - \frac{1}{x})^2$, > 0 always, or ≥ 0 always
10a)	Functions	$y = \ln(3x - 6) \implies 3x - 6 = e^{y}$
		$\Rightarrow x = \frac{e^{y} + 6}{3}; \{f^{-1}(x)\} = \frac{e^{x} + 6}{3}$
10b)		Domain: $x \in \mathfrak{R}$
		Range: $f^{-1}(x) > 2$
10c)		Attempting to find $f^{-1}(3) [= \frac{e^3 + 6}{2}]; = 8.70$
10d)		
		In curve passing through $y = 0$
		Symmetry in $x = k, k > 0$ All correct and asymptote at $x = 2$ labelled
10e)		Meets y-axis: $(x = 0)$, $y = \ln 6$

			Meets x-axis: $x = \frac{5}{3}$, (0); $x = \frac{7}{3}$, (0)
Challenge			$V = \int_0^{10} \pi y^2 dx$ = $\pi \int_0^{10} \frac{x}{x^2 + 1} dx$ = $\frac{1}{2} \pi [\ln(x^2 + 1)]_0^{10}$ = $\frac{1}{2} \pi \ln 101$ = 7.25 cubic units (3 s.f.)

"Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else" P Kraft

A2 Maths with Mechanics Assignment γ (gamma) due w/b 9/10

Drill

Part A Find the function f'(x) where f(x) is:

a) $x \cos x$ b) $x^2 \sec 3x$ c) $\frac{\tan 2x}{x}$ d) $\sin^3 x \cos x$

Part B Find the function f'(x) where f(x) is:

a) $\frac{x^2}{\tan x}$ b) $\frac{1+\sin x}{\cos x}$ c) $e^{2x}\cos x$ d) $e^x \sec 3x$

Part C Find the function f'(x) where f(x) is:

a) $\frac{\sin 3x}{e^x}$ b) $e^x \sin^2 x$ c) $\frac{\ln x}{\tan x}$ d) $\frac{e^{\sin x}}{\cos x}$

Current work

1. Express $\frac{7x}{x^2 - 3x - 10} + \frac{5}{5 - x}$ as a single fraction in its simplest terms.

2.
$$f(x) = e^{2x+3} - 1, x \in \mathbb{R}.$$

a) Sketch the curve with equation y = f(x), showing the coordinates of any points at which the curve meets the coordinate axes and the equation of the asymptote.

The curve with equation y = f(x) has a gradient of 8 at the point *P*. The *x*-coordinate of *P* is $\ln a + b$, where $a \in \mathbb{Z}$ and $b \in \mathbb{Q}$.

b) Find the value of *a* and the value of *b*.

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) = -\mathrm{cosec}^2 x$$

Given that $f(x) = \cot x + 3$,

b) solve f(x) + f'(x) = 0 for $0 \le x < 2\pi$, giving your answers to one decimal place where appropriate.

4.

The diagram shows part of the curve with equation $y = 3x \sin^2 x$.

a) Find $\frac{dy}{dx}$.

The point *P* on the curve has *x*-coordinate $\frac{\pi}{2}$. The normal to the curve at the point *P* cuts the *x*-axis at the point *A* and the *y*-axis at the point *B*. *O* is the origin.

b) Find an equation for the normal to the curve at *P*, giving your answer in the form ax + by + c = 0, where $a, b \in \mathbb{Z}$.

c) Find the exact value of the area of the triangle *OAB*.

5.

f:
$$x \to \frac{a}{x}, \quad x \in \mathbb{R}, x \neq 0,$$

g: $x \to ax + k, \quad x \in \mathbb{R},$

where *a* and *k* are positive constants.

a) Sketch the curve with equation y = |f(x)|.

The line y = g(x) is a tangent to the curve y = |f(x)| at the point *P*, and cuts the curve y = |f(x)| at the point *Q*.

b) Show that k = 2a. Given that a = 3, c) solve the equation $fg(x) = g^{-1}(x)$, giving your answer in the form $a + b \sqrt{c}$ where *a*, *b* and *c* are integers.

6. Express as a single fraction in its simplest form

$$\frac{x^2 - 8x + 15}{x^2 - 9} \times \frac{2x^2 + 6x}{(x - 5)^2}$$

7. The function f is defined by

$$f: x \to |2x-a|, x \in \mathbb{R},$$

where *a* is a positive constant.

- (a) Sketch the graph of y = f(x), showing the coordinates of the points where the graph cuts the axes.
- (b) On a separate diagram, sketch the graph of y = f(2x), showing the coordinates of the points where the graph cuts the axes.
- (c) Given that a solution of the equation $f(x) = \frac{1}{2}x$ is x = 4, find the two possible values of *a*.
- 8. Prove that

$$\frac{1-\tan^2\theta}{1+\tan^2\theta} \equiv \cos 2\theta \ .$$

9. The function f, defined for $x \in \mathbb{R}$, x > 0, is such that

f'(x) =
$$x^2 - 2 + \frac{1}{x^2}$$
.

- (a) Find the value of f''(x) at x = 4.
- (b) Given that f(3) = 0, find f(x).
- (c) Prove that f is an increasing function.
- 10. The function f is given by

f:
$$x \mapsto \ln (3x - 6)$$
, $x \in \mathbb{R}$, $x > 2$.

(a) Find $f^{-1}(x)$.

(b) Write down the domain of f^{-1} and the range of f^{-1} .

(c) Find, to 3 significant figures, the value of x for which f(x) = 3.

The function g is given by

$$g \colon x \mapsto \ln |3x - 6|, \quad x \in \mathbb{R}, \ x \neq 2.$$

(d) Sketch the graph of y = g(x).

(e) Find the exact coordinates of all the points at which the graph of y = g(x) meets the coordinate axes.

Are you up for a challenge? Then try this question:

The area enclosed by the curve

$$y = \sqrt{\frac{x}{x^2 + 1}}$$

the x-axis and the line x = 10 is rotated through 360° about the x-axis.

Use the formula the volume of a solid = $\int_0^{10} \pi y^2 dx$ to find the volume of the solid generated, giving the answer correct to 3 significant figures.