
Name:

Question		Done Back pack		Торіс	Answers
Drill	Aa)			C3 Differentiation trig – given $x =$, find dy/dx	$\frac{dy}{dx} = \frac{1}{secytany}$
	Ab)			C3 Differentiation trig – given y =, find dy/dx	$\frac{dy}{dx} = \sec^2 x - \csc^2 x$
	Ac)			C3 Differentiation trig – given $x =$, find dy/dx	$\frac{dy}{dx} = \frac{1}{2y\cos y - y^2\sin y}$
	Ad)			C3 Differentiation trig – given y =, find dy/dx	$\frac{dy}{dx} = \frac{\sin x - x \cos x}{\sin^2 x}$
	Ba)			C3 Algebraic Long Division	$x^{2}+3x+6+\frac{2}{x-1}$
	Bb)			C3 Algebraic Long Division	$2x^2 - 3x + 5 - \frac{10}{3}$
	Bc)			C3 Algebraic Long Division	$\frac{x+3}{x^2+2-\frac{6}{x^2+1}}$
	Ca)			C3 Functions - Graph Transformations/Sketching	Check using google – inc asymptotes
	Cb)			C3 Functions - Graph Transformations/Sketching	Check using google – inc asymptotes
	Cc)			C3 Functions - Graph Transformations/Sketching	Check using google – inc asymptotes
	Da)			C4 Integration – Reverse Chain Rule	$\frac{1}{5}(x-3)^5+c$
	Db)			C4 Integration – Reverse Chain Rule	$\frac{3}{2}\sin(2x+4)+c$
	Dc)			C4 Integration – Reverse Chain Rule	$\cos(\pi - x) + c$
	1a			C3 Functions – Graph Sketching with domain/range	Check using google – inc asymptotes
	1b			C3 Functions – Graph Sketching with domain/range	Check using google – inc asymptotes
	2a			C3 Functions – Composite Functions	10
	2b			C3 Functions – Composite Functions	17
	2c			C3 Functions – Composite Functions	26
	2d			C3 Functions – Composite Functions	$(x+3)^2+1$
ork	2e			C3 Functions – Composite Functions	$x^2 + 4$
Current Work	2f			C3 Functions – Composite Functions	$(x^2+1)^2+1$
ren	3a			C3 Functions – Composite Functions working backwards	gf(x)
Curr	3b			C3 Functions – Composite Functions working backwards	hg(x)
	3c			C3 Functions – Composite Functions working backwards	gf(x)
	3d			C3 Functions – Composite Functions working backwards	fh(x)
	3e			C3 Functions – Composite Functions working backwards	$f^2(x)$
	3f			C3 Functions – Composite Functions working backwards	$h^2(x)$
	3g			C3 Functions – Composite Functions working backwards	$g^2(x)$
	3h			C3 Functions – Composite Functions working backwards	hgf(x)
	4a			C3 Functions – quadratic find range	Range f: $f(x) \ge -1$
	4b			C3 Functions – quadratic find range	Range g: $g(x) \ge -3$

	4c	C3 Functions – quadratic, find domain/range to make one to one	One to one from max
			point. Domain h: $x \ge \frac{5}{2}$ Range h: $h(x) \le \frac{25}{4}$
	5a	C3 Differentiation trig – given x =, find dy/dx	$\frac{dy}{dx} = -\operatorname{cosecy}$
	5b	C3 Differentiation trig – given x =, find dy/dx	$\frac{dy}{dx} = \frac{1}{2}\cos 2y \cot 2y$
	5c	C3 Differentiation trig – given x =, find dy/dx	$\frac{dy}{dx} = \frac{2\sqrt{y}}{1 + 2\sqrt{y}}$
	ба	C4 Integration – Reverse Chain Rule	
	6b C4 Integration – Reverse Chain Rule		$\frac{-1}{2}(2x-1)^{-1}+c$
	6c	C4 Integration – Reverse Chain Rule	$-\frac{1}{2}\cot 2x + c$
	7a (C3 Trig Proof	PROOF
	7b	C3 Trig Proof	PROOF
	8	Find distance of point from tangent to axes	Use Sketch to help!
и – И	9	M1 SUVAT with friction	4.3
C ha	10	Cube inscribed inside Sphere.	2m ²

"Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else" P Kraft

A2 Maths with Mechanics Assignment γ (gamma) due w/b 3/10

Maths Trip: Maths In Action University Lectures in London. £20 a ticket (10 tickets available) 15th November Maths Trip: Maths In Action University Lectures in London. £20 a ticket (10 tickets available) 14th December

Drill

Part A Find dy/dx of the following functions, using appropriate notation:

(a) $x = \sec y$ (b) $y = \sec x \csc x$ (c) $x = y^2 \cos y$ (d) $y = \frac{x}{\sin x}$

Part B Use algebraic division to express these improper fractions in the form

$$ax^2 + bx + c + \frac{R}{\text{divisor}}$$

(a)
$$\frac{x^3 + 2x^2 + 3x - 4}{x - 1}$$
 (b) $\frac{2x^3 + 3x^2 - 4x + 5}{x + 3}$ (c) $\frac{x^4 + 3x^2 - 4}{x^2 + 1}$

Part C Sketch these curves (*a* is an arbitrary constant):

(a) $y = a - \frac{1}{x}$ (b) $y = -(x - a)^3$ (c) $y = a + a^{-x}$

Part D Integrate the following with respect to *x* using appropriate notation:

(a) $(x-3)^4$ (b) $3\cos(2x+4)$ (c) $\sin(\pi-x)$

Current work

- 1. On the same set of axes, sketch the following functions (with their domains restricted as required) and state their ranges:
 - (a) f(x) = 2x + 1 $x \in \mathbb{R}$ (b) $g(x) = (x 2)^2$ $x \in \mathbb{R}, x > 2$

2. The functions f and g are defined on the whole of \mathbb{R} by $f(x) = x^2 + 1$, g(x) = x + 3. Find: (a) fg(0) (b) fg(1) (c) $f^2(2)$

- (d) fg(x) (e) gf(x) (f) ff(x)
- 3. For the functions f(x) = x + 2, $g(x) = x^{-1}$, $h(x) = x^2$ defined on $x \in \mathbb{R}$ $x \neq 0$, state the compositions of functions which correspond to:
 - (a) $\frac{1}{x} + 2$ (b) $\frac{1}{x^2}$ (c) $\frac{1}{x+2}$ (d) $x^2 + 2$

(e)	<i>x</i> +4	(f)	x^4	(g)	x	(h)	$\frac{1}{(r+2)^2}$
-----	-------------	-----	-------	-----	---	-----	---------------------

- 4. Sketch the following functions on the given domain and hence find their ranges:
 - (a) $f(x) = x^2 + 4x + 3$ Domain f: $x \in \mathbb{R}$
 - (b) $g(t) = 2t^2 4t 1$ Domain g: $t \in \mathbb{R}$

Make the following a one to one function and state its domain and range and sketch it.

(c)
$$h(x) = 5x - x^2$$

Consolidation

5. Find
$$\frac{dy}{dx}$$
 in terms of y.
(a) $x = \cos y$ (b) $x = \sec 2y$ (c) $x = y + \sqrt{y}$

- 6. Integrate the following functions by working out what has been differentiated:
 - (a) $\int 3\sec^2 3x dx$ (b) $\int (2x-1)^{-2} dx$ (c) $\int \csc^2 2x dx$

7. Prove the following identities
(a)
$$(1 + \tan x) \left(1 + \tan \left(\frac{\pi}{4} - x \right) \right) \equiv 2$$
 (b) $\sec^2 x - \csc^2 x \equiv \tan^2 x - \cot^2 x$

8. The tangent to the curve with equation $y = \tan 2x$ at the point $x = \frac{\pi}{8}$ meets the y axis at the point Y. Show that the exact distance *OY* (where *O* is the origin) is $\frac{\pi}{2}$ -1.

M1 (Practice for M2)

9. A particle of mass 1kg is projected at 5 ms^{-1} along a rough horizontal surface. The coefficient of friction is 0.3. How far does the particle move before coming to rest?

Challenge Question

10. A cube is inscribed inside a sphere of diameter $1m^2$. What is the surface area of the cube?

Preparation: Read* about e^x and $\ln x$.

Chapter 3 C3 new textbook pages 31-43. C3 old textbook pages 29-40,

* you are not expected to work through questions in this preparation section but read the textbook making notes if you wish to help you understand the topic.