Name:

Question		Done	Backpack	Торіс	Comment						
	1i			C3 Differentiation trig	$4 \sec^2 2x \tan 2x$						
	1ii			C3 Differentiation trig	$-6\cot 3x \csc^2 3x$						
	1iii			C3 Differentiation trig	$-2\csc^2x\cot x$						
Drill	2i			C4 Integration Reverse chain	$\frac{1}{16}(4x-3)^4 + c$						
	2ii			C4 Integration Reverse chain	$\frac{1}{5}\sin(5x+4)+c$						
	2iii			C4 Integration Reverse chain	$\frac{1}{4}\cos(3-4x)+c$						
	3i			C2 Log evaluation	-2						
	3ii			C2 Log evaluation	3						
	3iii			C2 Log evaluation	1/3						
	4i			C4 Integration Reverse chain	$\frac{1}{3}\sec 3x + c$						
	4ii			C4 Integration Reverse chain	$(b) - \cos ecx + c$						
	4iii			C4 Integration Reverse chain	$\frac{1}{2}\tan 2x + c$						
	1a			C3 Differentiation all & factorising to simplify	$2 \sec 7x (7 \cos x \tan 7x - \sin x)$						
	1b			C3 Differentiation all & factorising to simplify	0						
	1c			C3 Differentiation all & factorising to simplify	$\frac{2x^2+1}{\sqrt{x^2+1}}$						
	2			C3 Find normal	$x = \frac{\pi}{2}$						
ion	3a			C4 Finding dy/dx from dx/dy	$\cos^2 y$						
Consolidati	3b			C4 Finding dy/dx from dx/dy	$\frac{1}{y^2}(3\sin y + y\cos y)$						
	3c			C4 Finding dy/dx from dx/dy	$\frac{\cos y}{3(1+y\tan y)}$						
	4a			C2 Solving trig equations	$\frac{\pi}{12}, \frac{7\pi}{12}, \frac{13\pi}{12}, \frac{19\pi}{12}$						
	4b			C2 Solving trig equations	0.322 ^c , 3.46 ^c , 2.82 ^c , 5.96 ^c						
	5a			C3 Proving trig identities	PROOF						
	5b			C3 Proving trig identities	PROOF						
	6			C3 Find normal	PROOF						
	7			C3 Differentiation & factorising to simplify	PROOF						
	8			C3 Algebraic division	A = 2, B = -4, C = 6, D = -11						

M1 Practice	9		M1 Impulse	0.4Ns , 6.33 ms ⁻¹
Challenge	10		C2 TOOLS	5.04

α	β	γ	δ	Е	ζ	η	θ	t	к	λ	μ	v	ξ	0	π	ρ	σ	τ	υ	φ	χ	ψ	ω
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

"It is a mathematical fact that the casting of this pebble from my hand alters the centre of gravity of the universe." T Carlyle

A2 Maths with Mechanics Assignment β (beta) due w/b 26/9

Come along to the Maths Association Talk – 29th September at 4:30pm in room 3
"Geometry Ancient And Modern" (It's free! Come along!)Maths Trip:Maths In Action University Lectures in London. £20 a ticket (10 tickets available) 15th November
Maths Trip:Maths In Action University Lectures in London. £20 a ticket (10 tickets available) 14th December

Drill

Part A Differentiate the following functions with respect to *x*:

(a)
$$f(x) = \sec^2 2x$$
 (b) $f(x) = \cot^2 3x$ (c) $f(x) = \csc^2 x$

Part B Find the following integrals by considering what has been differentiated

(a)
$$\int (4x-3)^3 dx$$
 (b) $\int \cos(5x+4) dx$ (c) $\int \sin(3-4x) dx$

Part C Find the exact values of the following

(a) $\log_3 \frac{1}{9}$ (b) $-\log_2 \frac{1}{8}$ (c) $\log_8 2$

Part D Find the following integrals by considering what has been differentiated

(a) $\int \sec 3x \tan 3x dx$ (b) $\int \cos e cx \cot x dx$ (c) $\int \sec^2 2x dx$

Current work

1. Differentiate the following using the correct notation:

(a)
$$f(x) = 2\cos x \sec 7x$$
 (b) $f(x) = \tan 2x \cot 2x$ (c) $y = x\sqrt{x^2 + 1}$

2. Find the equation of the normal to $y = \csc x$ at the point where $(\frac{\pi}{2}, 1)$

3. Find
$$\frac{dy}{dx}$$
, in terms of y, given that
(a) $x = \tan y$ (b) $x = y^3 \sin y$ (c) $x = 3y \sec y$

Consolidation

4. Solve the following equations in the interval $0 \le \theta \le 2\pi$. Give exact answers where you can, but otherwise give your answers to 3sf:

(a) $\sqrt{3}\sin 2\theta + 2\sin^2 \theta = 1$ (b) $4\tan 2\theta \tan \theta = 1$

- 5. Prove the following identities:
 - (a) $\sec x + \tan x \equiv \frac{1}{\sec x \tan x}$ (b) $\cos(90^\circ x) \equiv \sin x$
- 6. The maximum point on the curve with equation $y = x\sqrt{\sin x}$ where $0 < x < \pi$ is *A*. Show that the *x* coordinate of *A* satisfies the equation $2\tan x + x = 0$.

7. Show that
$$\frac{d}{dx} \left[\frac{1 + \cot x}{1 - \cot x} \right] = -2 \left(\frac{\csc x}{1 - \cot x} \right)^2$$

8. Show that $\frac{4x^3 - 6x^2 + 8x - 5}{2x + 1}$ can be written in the form $Ax^2 + Bx + C + \frac{D}{2x + 1}$ where *A*, *B*, *C* and *D* are constants to be found.

M1 Practice (Preparation for M2)

9. Two uniform smooth spheres, A of mass 0.03kg and B of mass 0.1kg, have equal radii and are moving directly towards each other with speeds of 7 ms⁻¹ and 4ms⁻¹ respectively. The spheres collide directly and B is reduced to rest by the impact. State the magnitude of the impulse experienced by B, and find the speed of A after impact.

10.Challenge Question

The area of each large semicircle is 2. What is the difference between the black and grey shaded areas?

Preparation: Read* about the inverse of functions, the one to one condition for a function to have an inverse. Also transforming graphs including the modulus functions |f(x)| and f(|x|) and the difference between them

C3 new textbook pages 23-30 and 63-82 C3 old textbook pages 21-28 and 54-72

* you are not expected to work through questions in this preparation section but read the textbook to understand the topic.

X:\Maths\TEAM - A2\A2 Assignments 16-17\A2 Mechanics\MPM2(2)beta 16-17.docx Updated: 15/09/2016