A2 Assignment beta Cover Sheet
Name:

Question		-	花	Topic	Comment
需	1i			C3 Differentiation trig	$4 \sec ^{2} 2 x \tan 2 x$
	1ii			C3 Differentiation trig	$-6 \cot 3 x \operatorname{cosec}^{2} 3 x$
	1iii			C3 Differentiation trig	$-2 \operatorname{cosec}^{2} x \cot x$
	2i			C4 Integration Reverse chain	$\frac{1}{16}(4 x-3)^{4}+c$
	2ii			C4 Integration Reverse chain	$\frac{1}{5} \sin (5 x+4)+c$
	2iii			C4 Integration Reverse chain	$\frac{1}{4} \cos (3-4 x)+c$
	3i			C2 Log evaluation	-2
	3ii			C2 Log evaluation	3
	3iii			C2 Log evaluation	1/3
	4i			C4 Integration Reverse chain	$\frac{1}{3} \sec 3 x+c$
	4ii			C4 Integration Reverse chain	(b) $-\operatorname{cosec} x+c$
	4iii			C4 Integration Reverse chain	$\frac{1}{2} \tan 2 x+c$
$\begin{aligned} & \tilde{0} \\ & \text { त्0 } \\ & \text { B } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1a			C3 Differentiation all \& factorising to simplify	$2 \sec 7 x(7 \cos x \tan 7 x-\sin x)$
	1b			C3 Differentiation all \& factorising to simplify	0
	1c			C3 Differentiation all \& factorising to simplify	$\frac{2 x^{2}+1}{\sqrt{x^{2}+1}}$
	2			C3 Find normal	$x=\frac{\pi}{2}$
	3a			C4 Finding dy/dx from dx/dy	$\cos ^{2} y$
	3b			C4 Finding dy/dx from dx/dy	$1 / y^{2}(3 \sin y+y \cos y)$
	3c			C4 Finding dy/dx from dx/dy	$\frac{\cos y}{3(1+y \tan y)}$
	4a			C2 Solving trig equations	$\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}$
	4b			C2 Solving trig equations	$0.322^{\text {c }}, 3.46^{c}, 2.82^{\text {c }}, 5.96^{\text {c }}$
	5a			C3 Proving trig identities	PROOF
	5b			C3 Proving trig identities	PROOF
	6			C3 Find normal	PROOF
	7			C3 Differentiation \& factorising to simplify	PROOF
	8			C3 Algebraic division	$A=2, B=-4, C=6, D=-11$

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	v	ξ	o	π	ρ	σ	τ	v	φ	χ	ψ

"It is a mathematical fact that the casting of this pebble from my hand alters the centre of gravity of the universe."

T Carlyle

A2 Maths with Mechanics Assignment β (beta) due w/b 26/9

Come along to the Maths Association Talk $-29^{\text {th }}$ September at 4:30pm in room 3
"Geometry Ancient And Modern" (It’s free! Come along!)
Maths Trip: Maths In Action University Lectures in London. $£ 20$ a ticket (10 tickets available) $15^{\text {th }}$ November Maths Trip: Maths In Action University Lectures in London. $£ 20$ a ticket (10 tickets available) $14^{\text {th }}$ December

Drill

Part A Differentiate the following functions with respect to x :
(a)
$f(x)=\sec ^{2} 2 x(b)$
$f(x)=\cot ^{2} 3 x$
(c) $f(x)=\operatorname{cosec}^{2} x$

Part B Find the following integrals by considering what has been differentiated
(a) $\int(4 x-3)^{3} d x$
(b) $\int \cos (5 x+4) d x$
(c) $\int \sin (3-4 x) d x$

Part C Find the exact values of the following
(a) $\quad \log _{3} \frac{1}{9}$
(b) $\quad-\log _{2} \frac{1}{8}$
(c) $\quad \log _{8} 2$

Part D Find the following integrals by considering what has been differentiated
(a) $\int \sec 3 x \tan 3 x d x$
(b) $\int \operatorname{cosec} x \cot x d x$
(c) $\int \sec ^{2} 2 x d x$

Current work

1. Differentiate the following using the correct notation:
(a) $\mathrm{f}(x)=2 \cos x \sec 7 x$
(b) $\mathrm{f}(x)=\tan 2 x \cot 2 x$
(c) $y=x \sqrt{x^{2}+1}$
2. Find the equation of the normal to $y=\operatorname{cosec} x$ at the point where $\left(\frac{\pi}{2}, 1\right)$
3. Find $\frac{d y}{d x}$, in terms of y, given that
(a) $x=\tan y$
(b) $\quad x=y^{3} \sin y$
(c) $x=3 y \sec y$

Consolidation

4. Solve the following equations in the interval $0 \leq \theta \leq 2 \pi$. Give exact answers where you can, but otherwise give your answers to 3sf:
(a) $\sqrt{3} \sin 2 \theta+2 \sin ^{2} \theta=1$
(b) $4 \tan 2 \theta \tan \theta=1$
5. Prove the following identities:
(a) $\sec x+\tan x \equiv \frac{1}{\sec x-\tan x}$
(b) $\cos \left(90^{\circ}-x\right) \equiv \sin x$
6. The maximum point on the curve with equation $y=x \sqrt{\sin x}$ where $0<x<\pi$ is A. Show that the x coordinate of A satisfies the equation $2 \tan x+x=0$.
7. Show that $\frac{d}{d x}\left[\frac{1+\cot x}{1-\cot x}\right]=-2\left(\frac{\operatorname{cosec} x}{1-\cot x}\right)^{2}$
8. Show that $\frac{4 x^{3}-6 x^{2}+8 x-5}{2 x+1}$ can be written in the form $A x^{2}+B x+C+\frac{D}{2 x+1}$ where A, B, C and D are constants to be found.

M1 Practice (Preparation for M2)

9. Two uniform smooth spheres, A of mass 0.03 kg and B of mass 0.1 kg , have equal radii and are moving directly towards each other with speeds of $7 \mathrm{~ms}^{-1}$ and $4 \mathrm{~ms}^{-1}$ respectively. The spheres collide directly and B is reduced to rest by the impact. State the magnitude of the impulse experienced by B, and find the speed of A after impact.

10.Challenge Question

The area of each large semicircle is 2 . What is the difference between the black and grey shaded areas?

Preparation: Read* about the inverse of functions, the one to one condition for a function to have an inverse. Also transforming graphs including the modulus functions $|f(x)|$ and $f(|x|)$ and the difference between them
C3 new textbook pages 23-30 and 63-82 C3 old textbook pages 21-28 and 54-72

* you are not expected to work through questions in this preparation section but read the textbook to understand the topic.

