Name:

Question		Done	BP	Ready	Topic	Comment	
	Aa				C4 Integration	$\frac{1}{4}\tan(4x+1)+c$	
	Ab				C4 Integration	$\frac{1}{2}\ln\left x^2+2x+5\right +c$	
	Ac				C4 Integration	$\frac{1}{12}\sin^3(4x-1)+c$	
	Ba				C4 Parametric – differentiation	$\frac{dy}{dx} = t - \frac{3}{2}$	
	Bb				C4 Parametric – differentiation	$\frac{dy}{dx} = \frac{2t}{t^2 - 1}$	
	Вс				C4 Parametric – differentiation	$\frac{dy}{dx} = t - \frac{3}{2}$ $\frac{dy}{dx} = \frac{2t}{t^2 - 1}$ $\frac{dy}{dx} = 4 \tan t$	
Drill	Ca				C4 Integration – partial fractions	$\ln x-1 + \ln x+3 + c$	
Q	Cb				C4 Integration – partial fractions	$\frac{\ln x-1 + \ln x+3 + c}{x + \frac{5}{4}\ln x-2 - \frac{5}{4}\ln x+2 + c}$	
	Сс				C4 Integration – partial fractions	$\frac{1}{2}x^2 + \frac{1}{2}\ln x+1 $	
						$+\frac{1}{2}\ln x-1 + c$	
	Da				C3 Functions – MOD solves	$\frac{-5}{8}, \frac{5}{2}$	
	Db				C3 Functions – MOD solves	$\frac{1}{4}$, 3	
	Dc				C3 Functions – MOD solves	$\pm 1, \pm 4$	
	1a				M2 Kinematics – find max v	16	
	1b				M2 Kinematics – find time return to O	12	
	2a				M2 Projectiles – proof given hori & vert distance		
	2b				M2 Projectiles – find speed at point	9.13 m s^{-1}	
Mechanics	3a				M2 COM – folded over, double density, dist AD	$\frac{13a}{9}$	
	3b				M2 COM – folded over, double density, dist AB	4 <i>a</i> 9	
	3c				M2 COM – suspended, angle to DE	45 degrees	
	3d				M2 COM – mass added, held horizontal, find m	$m = \frac{5M}{9}$	
	4					b) 7.21, 0.588 c) 2.12	
	5a				C3 Trig – proof		
3 sol.	5b				C3 Trig – simultaneous equations		
Consol.	5c		L		C3 Trig – R method	$5\cos(2x-36.87)$	
	5d				C3 Trig – solve	$x = 51.6^{\circ}, 165.2^{\circ}$	
tion	6				C4 Integration using trig identities	$\frac{1}{3}\sin 3x - \frac{1}{7}\sin 7x + c$	
C4 Consolidation	7a				C4 Differential Equations – solve	In partial fractions A and B should be $1/3$ and $-1/3$ c is $\ln 2$ (use the fact that when $t = 0$, $x = 0$)	

7b	C4 Differential Equations – show	as $x \to 3$, $t \to \infty$ so cannot make $3g$
8a	C4 Integration – trapezium rule	2.82843
8b	C4 Integration – trapezium rule	7.56048
8c	C4 Integration – Integration	128/15
9a	C4 Implicit Differentiation	$\frac{dy}{dx} = \frac{2 + 2ye^{-2x}}{e^{-2x} - 2y}$
9b	C4 Implicit Differentiation – find normal	x-4y+4=0
10a	C4 Vectors – vector equation of line	
10b	C4 Vectors – magnitude	$\sqrt{(126)}$
10c	C4 Vectors – angle between	36.7°
10d	C4 Vectors – shortest distance	$d = 3\sqrt{5} (\approx 6.7)$
10e	C4 Vectors – area of triangle	30.1 or 30.2
11	C4 Vectors – shortest distance	13.6

"The imaginary number is a fine and wonderful recourse of the divine spirit, almost an amphibian between being and not being" G. W. Leibnitz

A2 Maths with Mechanics Assignment φ (phi)

Due in week beginning March 12th

Drill

Part A Integrate the following:

(a)
$$\int \sec^2(4x+1)dx$$
 (b) $\int \left(\frac{x+1}{x^2+2x+5}\right)dx$ (c) $\int \cos(4x-1)\sin^2(4x-1)dx$

Part B Find dy/dx for each of the following, leaving your answer in terms of the parameter t:

(a)
$$x = 2t$$
, $y = t^2 - 3t + 2$ (b) $x = \frac{2t}{1+t^2}$, $y = \frac{(1-t^2)}{(1+t^2)}$ (c) $x = 2 + \sin t$, $y = 3 - 4\cos t$

Part C Integrate the following functions with respect to *x*:

(a)
$$\frac{2x+2}{(x-1)(x+3)}$$
 (b) $\frac{x^2+1}{x^2-4}$ (c) $\frac{x^3}{x^2-1}$

Part D Solve the following equations:

(a)
$$|3x+5| = 5|x|$$
 (b) $|6x-7| - |2x+5| = 0$ (c) $|x^2-4| = 3|x|$

Mechanics consolidation

1. At time t = 0 a particle P leaves the origin O and moves along the x-axis. At time t seconds the velocity of P is $v \text{ m s}^{-1}$, where

$$v = 8t - t^2.$$

- (a) Find the maximum value of v.
- (b) Find the time taken for P to return to O.

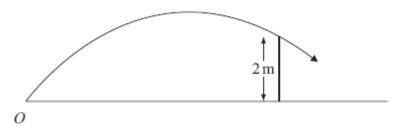
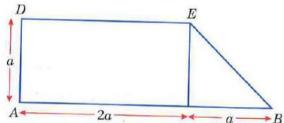


Figure 3

A child playing cricket on horizontal ground hits the ball towards a fence 10 m away. The ball moves in a vertical plane which is perpendicular to the fence. The ball just passes over the top of the fence, which is 2 m above the ground, as shown in Figure 3.


The ball is modelled as a particle projected with initial speed u m s⁻¹ from point O on the ground at an angle α to the ground.

(a) By writing down expressions for the horizontal and vertical distances, from O of the ball t seconds after it was hit, show that

$$2 = 10 \tan \alpha - \frac{50g}{u^2 \cos^2 \alpha}.$$

Given that $\alpha = 45^{\circ}$,

- (b) find the speed of the ball as it passes over the fence.
- A uniform rectangular piece of card ABCD has AB = 3a and BC = a. One corner of the rectangle is folded over to form a trapezium ABED as shown in the diagram:

Find the distance of the centre of mass of the trapezium from

- (a) AD,
- (b) AB.

The lamina ABED is freely suspended from E and hangs at rest.

(c) Find the angle between DE and the horizontal.

The mass of the lamina is M. A particle of mass m is attached to the lamina at the point B. The lamina is freely suspended from E and it hangs at rest with AB horizontal.

(d) Find m in terms of M.

C3 consolidation

4. (a) Show that $2 \sin 2\theta - 3 \cos 2\theta - 3 \sin \theta + 3 \equiv \sin \theta (4 \cos \theta + 6 \sin \theta - 3)$.

(b) Express $4 \cos \theta + 6 \sin \theta$ in the form $R \sin (\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$.

(c) Hence, for $0 \le \theta < \pi$, solve $2 \sin 2\theta = 3(\cos 2\theta + \sin \theta - 1)$, giving your answers in radians to 3 significant figures, where appropriate.

5. (a) Use the identity $\cos (A + B) = \cos A \cos B - \sin A \sin B$, to show that $\cos 2A = 1 - 2 \sin^2 A$

The curves C_1 and C_2 have equations

$$C_1$$
: $y = 3 \sin 2x$

$$C_2$$
: $y = 4 \sin^2 x - 2 \cos 2x$

(b) Show that the x-coordinates of the points where C_1 and C_2 intersect satisfy the equation

$$4\cos 2x + 3\sin 2x = 2$$

(c) Express $4\cos 2x + 3\sin 2x$ in the form $R\cos (2x - \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(d) Hence find, for $0 \le x < 180^{\circ}$, all the solutions of

$$4\cos 2x + 3\sin 2x = 2$$
,

giving your answers to 1 decimal place.

C4 consolidation

- **6.** Find $\int 2 \sin 5x \sin 2x \ dx$.
- 7. During a chemical reaction, a compound is being made from two other substances. At time t hours after the start of the reaction, x g of the compound has been produced. Assuming that x = 0 initially, and that

$$\frac{dx}{dt} = 2(x-6)(x-3)$$

- (a) Show that it takes approximately 7 minutes to produce 2 g of the compound.
- (b) Explain why it is not possible to produce 3 g of the compound.

8.

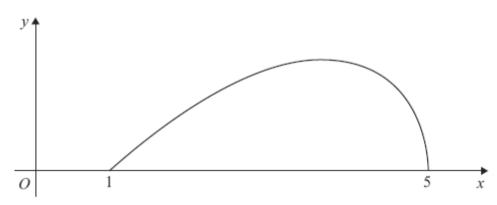


Figure 1

Figure 1 shows the finite region R bounded by the x-axis and the curve with equation $y = (x - 1)\sqrt{(5 - x)}, \quad 1 \le x \le 5$

The table shows corresponding values of x and y where $y = (x - 1)\sqrt{(5 - x)}$.

x	1	2	3	4	5
у	0	1.73205		3	0

- (a) Copy and complete the table above giving the missing value of y to 5 decimal places.
- (b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.
- (c) Use integration to find the exact area of R.

- **9.** The curve C has the equation $ye^{-2x} = 2x + y^2$.
 - (a) Find $\frac{dy}{dx}$ in terms of x and y.

The point P on C has coordinates (0, 1).

- (b) Find the equation of the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.
- 10. Relative to a fixed origin O, the point A has position vector $(8\mathbf{i} + 13\mathbf{j} 2\mathbf{k})$, the point B has position vector $(10\mathbf{i} + 14\mathbf{j} 4\mathbf{k})$, and the point C has position vector $(9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})$.

The line l passes through the points A and B.

- (a) Find a vector equation for the line l.
- (b) Find $|\overrightarrow{CB}|$.
- (c) Find the size of the acute angle between the line segment CB and the line l, giving your answer in degrees to 1 decimal place.
- (d) Find the shortest distance from the point C to the line l.

The point *X* lies on *l*. Given that the vector \overrightarrow{CX} is perpendicular to *l*,

- (e) find the area of the triangle CXB, giving your answer to 3 significant figures
- 11. There is a line with equation $r = (4i 3j 7k) + \lambda(3i 3j + 2k)$. A has position vector (2i + 3j + 5k), find the shortest distance from the line to A.