Name:

Question		\%	会	家	Topic	Comment
$\bar{\square}$	Aa				C4 Integration	$\frac{1}{4} \tan (4 x+1)+c$
	Ab				C4 Integration	$\frac{1}{2} \ln \left\|x^{2}+2 x+5\right\|+c$
	Ac				C4 Integration	$\frac{1}{12} \sin ^{3}(4 x-1)+c$
	Ba				C4 Parametric - differentiation	$\frac{d y}{d x}=t-\frac{3}{2}$
	Bb				C4 Parametric - differentiation	$\frac{d y}{d x}=\frac{2 t}{t^{2}-1}$
	Bc				C4 Parametric - differentiation	$\frac{d y}{d x}=4 \tan t$
	Ca				C4 Integration - partial fractions	$\ln \|x-1\|+\ln \|x+3\|+c$
	Cb				C4 Integration - partial fractions	$\begin{gathered} x+\frac{5}{4} \ln \|x-2\|-\frac{5}{4} \ln \|x+2\| \\ +c \end{gathered}$
	Cc				C4 Integration - partial fractions	$\begin{aligned} \left.\frac{1}{2} x^{2}+\frac{1}{2} \ln \right\rvert\, x+ & 1 \mid \\ & +\frac{1}{2} \ln \|x-1\| \\ & +c \end{aligned}$
	Da				C3 Functions - MOD solves	$\frac{-5}{8}, \frac{5}{2}$
	Db				C3 Functions - MOD solves	$\frac{1}{4}, 3$
	Dc				C3 Functions - MOD solves	$\pm 1, \pm 4$
	1a				M2 Kinematics - find max v	16
	1b				M2 Kinematics - find time return to O	12
	2a				M2 Projectiles - proof given hori \& vert distance	
	2b				M2 Projectiles - find speed at point	$9.13 \mathrm{~m} \mathrm{~s}^{-1}$
	3a				M2 COM - folded over, double density, dist AD	$\frac{13 a}{9}$
	3b				M2 COM - folded over, double density, dist AB	$\frac{4 a}{9}$
	3c				M2 COM - suspended, angle to DE	45 degrees
	3d				M2 COM - mass added, held horizontal, find m	$m=\frac{5 M}{9}$
Paper	4				C3 JUNE 2005 - available on the VLE	
O	5a				C3 Trig - proof	
	5b				C3 Trig - simultaneous equations	
	5c				C3 Trig - R method	$5 \cos (2 x-36.87)$
	5d				C3 Trig - solve	$x=51.6^{\circ}, 165.2^{\circ}$
00000000U	6				C 4 Integration using trig identities	$\frac{1}{3} \sin 3 x-\frac{1}{7} \sin 7 x+c$
	7 a				C4 Differential Equations - solve	In partial fractions A and B should be $1 / 3$ and $-1 / 3$ c is $\ln 2$ (use the fact that when $\mathrm{t}=0, x=0$)
	7b				C4 Differential Equations - show	as $x \rightarrow 3, t \rightarrow \infty$ so cannot

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ

"The imaginary number is a fine and wonderful recourse of the divine spirit, almost an amphibian between being and not being"
G. W. Leibnitz

A2 Maths with Mechanics Assignment φ (phi)

The "Omega" assignment will be a revision schedule showing you which papers you need to complete.

Due in w/b 6/3

Drill

Part A Integrate the following:
(a) $\int \sec ^{2}(4 x+1) d x$
(b) $\int\left(\frac{x+1}{x^{2}+2 x+5}\right) d x$
(c) $\int \cos (4 x-1) \sin ^{2}(4 x-1) d x$

Part B Find dy/dx for each of the following, leaving your answer in terms of the parameter t :
(a) $x=2 t, \quad y=t^{2}-3 t+2$
(b) $x=\frac{2 t}{1+t^{2}}, \quad y=\frac{\left(1-t^{2}\right)}{\left(1+t^{2}\right)}$
(c) $x=2+\sin t, y=3-4 \cos t$

Part C Integrate the following functions with respect to x :
(a) $\frac{2 x+2}{(x-1)(x+3)}$
(b) $\frac{x^{2}+1}{x^{2}-4}$
(c) $\frac{x^{3}}{x^{2}-1}$

Part D Solve the following equations:
(a) $\quad|3 x+5|=5|x|$
(b) $\quad|6 x-7|-|2 x+5|=0$
(c) $\left|x^{2}-4\right|=3|x|$

Mechanics consolidation

1. At time $t=0$ a particle P leaves the origin O and moves along the x-axis. At time t seconds the velocity of P is $v \mathrm{~m} \mathrm{~s}^{-1}$, where

$$
v=8 t-t^{2}
$$

(a) Find the maximum value of v.
(b) Find the time taken for P to return to O.

Figure 3
A child playing cricket on horizontal ground hits the ball towards a fence 10 m away. The ball moves in a vertical plane which is perpendicular to the fence. The ball just passes over the top of the fence, which is 2 m above the ground, as shown in Figure 3.

The ball is modelled as a particle projected with initial speed $u \mathrm{~m} \mathrm{~s}^{-1}$ from point O on the ground at an angle α to the ground.
(a) By writing down expressions for the horizontal and vertical distances, from O of the ball t seconds after it was hit, show that

$$
2=10 \tan \alpha-\frac{50 g}{u^{2} \cos ^{2} \alpha} .
$$

Given that $\alpha=45^{\circ}$,
(b) find the speed of the ball as it passes over the fence.

3 A uniform rectangular piece of card $A B C D$ has $A B=3 a$ and $B C=a$. One corner of the rectangle is folded over to form a trapezium $A B E D$ as shown in the diagram:

Find the distance of the centre of mass of the trapezium from
(a) $A D$,
(b) $A B$.

The lamina $A B E D$ is freely suspended from E and hangs at rest.
(c) Find the angle between $D E$ and the horizontal.

The mass of the lamina is M. A particle of mass m is attached to the lamina at the point B. The lamina is freely suspended from E and it hangs at rest with $A B$ horizontal.
(d) Find m in terms of M.

C3 consolidation

4. Complete the C3 June 2005 paper in exam conditions. Mark it carefully using the mark scheme. Both are available on the VLE.
5. (a) Use the identity $\cos (A+B)=\cos A \cos B-\sin A \sin B$, to show that

$$
\cos 2 A=1-2 \sin ^{2} A
$$

The curves C_{1} and C_{2} have equations

$$
\begin{aligned}
& C_{1}: y=3 \sin 2 x \\
& C_{2}: y=4 \sin ^{2} x-2 \cos 2 x
\end{aligned}
$$

(b) Show that the x-coordinates of the points where C_{1} and C_{2} intersect satisfy the equation

$$
4 \cos 2 x+3 \sin 2 x=2
$$

(c) Express $4 \cos 2 x+3 \sin 2 x$ in the form $R \cos (2 x-\alpha)$, where $R>0$ and $0<\alpha<$ 90°, giving the value of α to 2 decimal places.
(d) Hence find, for $0 \leq x<180^{\circ}$, all the solutions of

$$
4 \cos 2 x+3 \sin 2 x=2
$$

giving your answers to 1 decimal place.

C4 consolidation

6. Find $\int 2 \sin 5 x \sin 2 x d x$.
7. During a chemical reaction, a compound is being made from two other substances. At time t hours after the start of the reaction, $x \mathrm{~g}$ of the compound has been produced. Assuming that $x=0$ initially, and that

$$
\frac{d x}{d t}=2(x-6)(x-3)
$$

(a) Show that it takes approximately 7 minutes to produce 2 g of the compound.
(b) Explain why it is not possible to produce 3 g of the compound.
8.

Figure 1
Figure 1 shows the finite region R bounded by the x-axis and the curve with equation

$$
y=(x-1) \sqrt{ }(5-x), \quad 1 \leq x \leq 5
$$

The table shows corresponding values of x and y where $y=(x-1) \sqrt{ }(5-x)$.

x	1	2	3	4	5
y	0	1.73205		3	0

(a) Copy and complete the table above giving the missing value of y to 5 decimal places.
(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.
(c) Use integration to find the exact area of R.
9. The curve C has the equation $y \mathrm{e}^{-2 x}=2 x+y^{2}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

The point P on C has coordinates $(0,1)$.
(b) Find the equation of the normal to C at P,
giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
10. Relative to a fixed origin O, the point A has position vector $(8 \mathbf{i}+13 \mathbf{j}-2 \mathbf{k})$, the point B has position vector $(10 \mathbf{i}+14 \mathbf{j}-4 \mathbf{k})$, and the point C has position vector $(9 \mathbf{i}+9 \mathbf{j}+6 \mathbf{k})$.

The line l passes through the points A and B.
(a) Find a vector equation for the line l.
(b) Find $|\overrightarrow{C B}|$.
(c) Find the size of the acute angle between the line segment $C B$ and the line l, giving your answer in degrees to 1 decimal place.
(d) Find the shortest distance from the point C to the line l.

The point X lies on l. Given that the vector $\overrightarrow{C X}$ is perpendicular to l,
(e) find the area of the triangle $C X B$, giving your answer to 3 significant figures
11. There is a line with equation $r=(4 \boldsymbol{i}-3 \boldsymbol{j}-7 \boldsymbol{k})+\lambda(3 \boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k})$. A has position vector $(2 \boldsymbol{i}+3 \boldsymbol{j}+5 \boldsymbol{k})$, find the shortest distance from the line to A .

