Name：

Question		E	畮	䆘	Topic	Comment
䛣	Aa				C4 Integration	$-\frac{1}{2} \ln \left\|3-x^{2}\right\|+c$
	Ab				C4 Integration	$\frac{1}{2} x^{2}+x+\ln k\|x-1\|$
	Ac				C4 Integration	$-\frac{1}{8}(4 x-1)^{-2}+c$
	Ba				C3 Functions－MOD sketch	Check using desmos
	Bb				C3 Functions－MOD sketch	Check using desmos
	Bc				C3 Functions－MOD sketch	Check using desmos
	Ca				C4 Parametric－axes crossing points	$(0,2),(-1,0),(0,-2)$
	Cb				C4 Parametric－axes crossing points	$(0,0),(2,0)$
	Cc				C4 Parametric－axes crossing points	（0，1），（1，0）
	Da				C4 Differential equations－separate variables	$\int \frac{1}{y} d y=\int \frac{1+x}{x} d x$
	Db				C4 Differential equations－separate variables	$\int \frac{1}{p-2} d p=\int 1 d s$
	Dc				C4 Differential equations－separate variables	$\int e^{-s} d s=2 \int e^{t} d t$
C4	1a				C4 Forming differential equations	$\frac{d A}{d t}=k A$
	1b				C4 Forming differential equations	$\frac{d V}{d t}=-k V$
	1c				C4 Forming differential equations	$\frac{d x}{d t}=-k x$
⿹ㅡ⿹ㅡㄹ000000	2a				C3 Numerical methods－find approximations	$\begin{gathered} x_{1}=2.32, \quad x_{2}=2.37158145 \ldots \\ \\ \approx 2.372, \\ \\ x_{3}=2.3555935 \ldots \\ \\ \approx 2.356 \\ x_{4}=2.3604369 \ldots \approx 2.360 \\ \hline \end{gathered}$
	2b				C3 Numerical methods－show root is correct	Test upper and lower bounds．Show change of sign
	3 a				C3 e \＆ln word problems－show initial number	80
	3b				C3 e \＆ln word problems－solve for t	12．6286．．．
	3c				C3 e \＆ln word problems－differentiate	$\frac{d P}{d t}=16 e^{\frac{t}{5}}$
	3d				C3 e \＆ln word problems－find P via a value for t ．	250
	4a				C3 Functions－Sketch modulus	Check desmos
	4b				C3 Functions－sketch inverse	Check desmos $\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{R}, \mathrm{f}(x)>-k$ or $y>-k$ or $[-k, \infty]$
	4c				C3 Functions－state range of f	$\boldsymbol{f}(\boldsymbol{x}) \in \mathbb{R}, \mathrm{f}(x)>-k$ or $y>-k$ or $[-k$ ， ∞ ］
	4d				C3 Functions－find f^{-1}	$\mathrm{f}^{-1}(x)=\frac{1}{2} \ln \|x+k\|$
	4 e				C3 Functions－state domain f^{-1}	$\boldsymbol{x} \in \mathbb{R}, x>-k$ or $[-k, \infty]$
	5a				C3 Algebraic Fractions－simplify	Proof
	5b				C3 Differentiation－quotient rule	Proof
	5c				C3 Differentiation－set derivative＝ 1	$x=\ln 4$ or $x=0$

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	v	φ	χ	ψ	ω

"The truth of the matter is that, though mathematics may contain beauty, it can only be glimpsed after much hard thinking"
M. Holt

A2 Maths with Mechanics Sheet v (upsilon)

Due in week beginning March 5th

Drill

Part A Integrate the following functions:
(a) $\int \frac{x}{3-x^{2}} d x$
(b) $\int \frac{x^{2}}{x-1} d x$
(c) $\int \frac{1}{(4 x-1)^{3}} d x$

Part B Sketch the following functions:
(a) $y=1+\left|x^{2}-4\right|$
(b) $\quad y=\sin |x|$
(c) $y=e^{|x|}+3$

Part C Find where these parametric curves cross the x and y axes:
(a)
$x=t^{2}-1$
$x=1+\cos t$
$y=\sin t$
(c) $\begin{aligned} & x=\sin t \\ & y=\cos ^{2} t\end{aligned}$

Part D Separate the variables of these following first order differential equations:
(a) $x \frac{d y}{d x}=y+x y$
(b) $\frac{d p}{d s}=p-2$
(c) $\frac{d s}{d t}=2 e^{s+t}$

C4: Forming Differential Equations

1. (a) The area of weed on the surface of the pond is increasing at a rate proportional to its area at that instant. Express this statement as a differential equation.
(b) A simple model suggests that the rate at which a car is depreciating is proportional to the value of the car at that instant. Express this statement as a differential equation.
(c) In a chemical reaction, hydrogen peroxide is converted into water and oxygen. At time t after the start of the reaction, the quantity of hydrogen peroxide that has not been converted is x and the rate at which x is decreasing is proportional to x. Write down a differential equation in x and t.

C3 consolidation

2.

Figure 1
Figure 1 shows part of the curve with equation $y=-x^{3}+2 x^{2}+2$, which intersects the x-axis at the point A where $x=\alpha$.

To find an approximation to α, the iterative formula

$$
x_{n+1}=\frac{2}{\left(x_{n}\right)^{2}}+2 \quad \text { is used. }
$$

(a) Taking $x_{0}=2.5$, find the values of x_{1}, x_{2}, x_{3} and x_{4}.

Give your answers to 3 decimal places where appropriate.
(b) Show that $\alpha=2.359$ correct to 3 decimal places.
3. Rabbits were introduced onto an island. The number of rabbits, P, t years after they were introduced is modelled by the equation

$$
P=80 \mathrm{e}^{\frac{1}{5} t}, \quad t \in \mathbb{R}, \quad t \geq 0 .
$$

(a) Write down the number of rabbits that were first introduced to the island.
(b) Find the number of years it would take for the number of rabbits to first exceed 1000.
(c) Find $\frac{\mathrm{d} P}{\mathrm{~d} t}$.
(d) Find P when $\frac{\mathrm{d} P}{\mathrm{~d} t}=50$.
4.

Figure 2

Figure 2 shows a sketch of part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$.
The curve meets the coordinate axes at the points $A(0,1-k)$ and $B\left(\frac{1}{2} \ln k, 0\right)$, where k is a constant and $k>1$, as shown in Figure 2.

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(|x|)$,
(b) $y=\mathrm{f}^{-1}(x)$.

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $\mathrm{f}(x)=\mathrm{e}^{2 x}-k$,
(c) state the range of f,
(d) find $\mathrm{f}^{-1}(x)$,
(e) write down the domain of f^{-1}.
5. The function f is defined by

$$
\mathrm{f}(x)=1-\frac{2}{(x+4)}+\frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, x \neq-4, x \neq 2 .
$$

(a) Show that $\mathrm{f}(x)=\frac{x-3}{x-2}$.

The function g is defined by

$$
\mathrm{g}(x)=\frac{\mathrm{e}^{x}-3}{\mathrm{e}^{x}-2}, \quad x \in \mathbb{R}, x \neq \ln 2 .
$$

(b) Differentiate $\mathrm{g}(x)$ to show that $\mathrm{g}^{\prime}(x)=\frac{\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}$.
(c) Find the exact values of x for which $\mathrm{g}^{\prime}(x)=1$

M2 consolidation

6. A particle of mass 0.25 kg is moving with velocity $(3 \mathbf{i}+7 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$ when it receives the impulse ($5 \mathbf{i}-3 \mathbf{j}$) N s.

Find the speed of the particle immediately after the impulse. *Hint: Use the M1 Impulse Momentum principle, but with vectors now instead. Remember speed means the magnitude!*
7. A truck of mass of 300 kg moves along a straight horizontal road with a constant speed of $10 \mathrm{~m} \mathrm{~s}^{-1}$. The resistance to motion of the truck has magnitude 120 N .
(a) Find the rate at which the engine of the truck is working.

On another occasion the truck moves at a constant speed up a hill inclined at θ to the horizontal, where $\sin \theta=\frac{1}{14}$. The resistance to motion of the truck from non-gravitational forces remains of magnitude 120 N . The rate at which the engine works is the same as in part (a).
(b) Find the speed of the truck.
8.

Figure 2
A shop sign $A B C D E F G$ is modelled as a uniform lamina, as illustrated in Figure 2. $A B C D$ is a rectangle with $B C=120 \mathrm{~cm}$ and $D C=90 \mathrm{~cm}$. The shape $E F G$ is an isosceles triangle with $E G=60 \mathrm{~cm}$ and height 60 cm . The mid-point of $A D$ and the mid-point of $E G$ coincide.
(a) Find the distance of the centre of mass of the sign from the side $A D$.

The sign is freely suspended from A and hangs at rest.
(b) Find the size of the angle between $A B$ and the vertical.
9.

Figure 4
A particle P of mass 2 kg is projected up a rough plane with initial speed $14 \mathrm{~m} \mathrm{~s}^{-1}$, from a point X on the plane, as shown in Figure 4. The particle moves up the plane along the line of greatest slope through X and comes to instantaneous rest at the point Y. The plane is inclined at an angle α to the horizontal, where $\tan \alpha=\frac{7}{24}$. The coefficient of friction between the particle and the plane is $\frac{1}{8}$.
(a) Use the work-energy principle to show that $X Y=25 \mathrm{~m}$.

After reaching Y, the particle P slides back down the plane.
(b) Find the speed of P as it passes through X.
10. A particle is projected at an angle θ from the horizontal at a height of 100 m from the ground with speed $30 \mathrm{~m} / \mathrm{s}$. Find the speed it hits the ground. *think about the quickest way of doing this!*

C4 consolidation

11. (a) Use integration by parts to find $\int x \mathrm{e}^{x} \mathrm{~d} x$.
(b) Hence find $\int x^{2} \mathrm{e}^{x} \mathrm{~d} x$.
12. A curve has equation $3 x^{2}-y^{2}+x y=4$. The points P and Q lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at P and at Q.
(a) Use implicit differentiation to show that $y-2 x=0$ at P and at Q.
(b) Find the coordinates of P and Q.
13. Relative to a fixed origin, the points A, B, and C have position vectors $(2 \mathbf{i}-\mathbf{j}+6 \mathbf{k})$, ($5 \mathbf{i}-4 \mathbf{j}$) and ($7 \mathbf{i}-6 \mathbf{j}-4 \mathbf{k}$) respectively.
(a) Show that A, B and C all lie on a single straight line.
(b) Write down the ratio $A B: B C$

The point D has position vector ($3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$).
(c) Show that AD is perpendicular to BD .
(4)
(d) Find the exact area of triangle ABD.
(3)

