A2 Assignment Upsilon Cover Sheet

Question		Done	BP	Ready	Торіс	Comment						
	Aa				C4 Integration	$-\frac{1}{2}\ln 3-x^2 +c$						
	Ab				C4 Integration	$\frac{1}{2}x^2 + x + \ln k x-1 $						
	Ac				C4 Integration	$ \frac{-\frac{1}{2}\ln 3-x^2 +c}{\frac{1}{2}x^2+x+\ln k x-1 } $ $ \frac{-\frac{1}{8}(4x-1)^{-2}+c}{\frac{1}{8}(4x-1)^{-2}+c} $						
	Ba				C3 Functions – MOD sketch	Check using desmos						
	Bb				C3 Functions – MOD sketch	Check using desmos						
l ==	Bc				C3 Functions – MOD sketch	Check using desmos						
Drill	Ca				C4 Parametric – axes crossing points	(0,2),(-1,0),(0,-2)						
	Cb				C4 Parametric – axes crossing points	(0,0),(2,0)						
	Cc				C4 Parametric – axes crossing points	(0,1),(1,0)						
	Da				C4 Differential equations – separate variables	$\int \frac{1}{y} dy = \int \frac{1+x}{x} dx$						
	Db				C4 Differential equations – separate variables	$\int \frac{1}{y} dy = \int \frac{1+x}{x} dx$ $\int \frac{1}{p-2} dp = \int 1 ds$						
	Dc				C4 Differential equations – separate variables	$\int e^{-s} ds = 2 \int e^t dt$						
	1a				C4 Forming differential equations	$\frac{dA}{dt} = kA$ $\frac{dV}{dt} = -kV$ $\frac{dx}{dt} = -kx$						
C4	1b				C4 Forming differential equations	$\frac{dV}{dt} = -kV$						
	1c				C4 Forming differential equations	$\frac{dx}{dt} = -kx$						
	2a				C3 Numerical methods – find approximations	$x_1 = 2.32,$ $x_2 = 2.37158145$ $\approx 2.372,$ $x_3 = 2.3555935$ ≈ 2.356 $x_4 = 2.3604369 \approx 2.360$						
	2b				C3 Numerical methods – show root is correct	Test upper and lower bounds. Show change of sign						
	3a				C3 e & ln word problems – show initial number	80						
_ u	3b				C3 e & ln word problems – solve for t	12.6286						
C3 Consolidation	3c				C3 e & ln word problems - differentiate	$\frac{dP}{dt} = 16e^{\frac{t}{5}}$						
Conso	3d				C3 e & ln word problems – find P via a value for t.	250						
33 (4a				C3 Functions – Sketch modulus	Check desmos						
	4b				C3 Functions – sketch inverse	Check desmos $f(x) \in \mathbb{R}$, $f(x) > -k$ or $y > -k$ or $[-k, \infty]$						
	4c				C3 Functions – state range of f	$f(x) \in \mathbb{R}, f(x) > -k \text{ or } y > -k \text{ or } [-k, \infty]$						
	4d				C3 Functions – find f ¹	$f^{-1}(x) = \frac{1}{2} \ln x + k $						
	4e				C3 Functions – state domain f ¹	$x \in \mathbb{R}, x > -k \text{ or } [-k, \infty]$						
	5a				C3 Algebraic Fractions – simplify	Proof						
	5b				C3 Differentiation – quotient rule	Proof						

	5c	C3 Differentiation – set derivative = 1	$x = \ln 4$ or $x = 0$
	6	M2 Vectors Collisions – Impulse	23.5
	7a	Momentum, find speed M2 Work Energy Power – find Power flat	1200 W
u u	/a	road	1200 W
M2 Consolidation	7b	M2 Work Energy Power – find speed up	3.6 m s^{-1}
 olic		slope given power	
Suc	8a	M2 COM – One shape take away another	50 cm
υ	8b	M2 COM – angle of suspension to vertical	50.2 degrees
MZ	9a	M2 WEP – find distance moved up slope	
	9b	M2 WEP – find speed after moving back	8.9 m s^{-1}
		down slope	
	10	M2 COMEP – projectiles, find final speed	53.5 m/s
	11a	C4 Integration – by parts	$xe^{x}-e^{x}(+c)$
	11b	C4 Integration – by parts	$x^2e^x - 2(xe^x - e^x)(+c)$
	12a	C4 Implicit differentiation - given gradient	y-2x=0
on	12b	C4 Implicit differentiation - find	(2, 4) and (-2, -4)
lati		coordinate points	
C4 Consolidation	13a	C4 Vectors - Collinear	Show AC parallel to AB (multiple of
ons			the same vector), sharing a common
ŭ			point therefore single straight line.
2	13b	C4 Vectors - Ratio of length of lines	3:2
	13c	C4 Vectors - Perpendicular vectors	Find AD and BD. Show $AD.BD = 0$
	13d	C4 Vectors - Area of triangle	$\frac{9}{2}\sqrt{5}$

α	В	ν	S	C	٦	n	Д	1	v	2	и	ν	ع		π-	0	~	τ.		Ø	γ	W	ω
α	P	′	0	6	כ	''	U	ι	Λ	1	μ.	V	7	U	\mathcal{H}	,	0	ι	U	Ψ	λ	Ψ	ω

"The truth of the matter is that, though mathematics may contain beauty, it can only be glimpsed after much hard thinking"

M. Holt

A2 Maths with Mechanics Sheet υ (upsilon)

Once we get to the Easter holidays, all assignments are going to consist of past papers. The "Omega" assignment will be a revision schedule showing you which papers you need to complete.

Due in w/b 27/2

Drill

Part A Integrate the following functions:

(a)
$$\int \frac{x}{3-x^2} dx$$

(b)
$$\int \frac{x^2}{x-1} dx$$

$$\int \frac{x}{3-x^2} dx$$
 (b) $\int \frac{x^2}{x-1} dx$ (c) $\int \frac{1}{(4x-1)^3} dx$

Part B Sketch the following functions:

(a)
$$y = 1 + |x^2 - 4|$$

(b)
$$y = \sin|x|$$

(c)
$$y = e^{|x|} + 3$$

Part C Find where these parametric curves cross the x and y axes:

(a)
$$x = t^2 - 1$$
$$y = 2t$$

(b)
$$x = 1 + \cos t$$
$$y = \sin t$$

(c)
$$x = \sin t$$
$$y = \cos^2 t$$

Part D Separate the variables of these following first order differential equations:

(a)
$$x \frac{dy}{dx} = y + xy$$
 (b) $\frac{dp}{ds} = p - 2$ (c) $\frac{ds}{dt} = 2e^{s+t}$

(b)
$$\frac{dp}{ds} = p - 2$$

(c)
$$\frac{ds}{dt} = 2e^{s+}$$

C4: Forming Differential Equations

- 1. The area of weed on the surface of the pond is increasing at a rate proportional (a) to its area at that instant. Express this statement as a differential equation.
 - A simple model suggests that the rate at which a car is depreciating is proportional to (b) the value of the car at that instant. Express this statement as a differential equation.
 - (c) In a chemical reaction, hydrogen peroxide is converted into water and oxygen. At time t after the start of the reaction, the quantity of hydrogen peroxide that has not been converted is x and the rate at which x is decreasing is proportional to x. Write down a differential equation in x and t.

C3 consolidation

2.

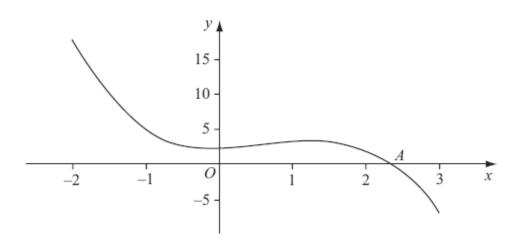


Figure 1

Figure 1 shows part of the curve with equation $y = -x^3 + 2x^2 + 2$, which intersects the x-axis at the point A where x = a.

To find an approximation to α , the iterative formula

$$x_{n+1} = \frac{2}{(x_n)^2} + 2$$
 is used.

- (a) Taking $x_0 = 2.5$, find the values of x_1 , x_2 , x_3 and x_4 . Give your answers to 3 decimal places where appropriate.
- (b) Show that $\alpha = 2.359$ correct to 3 decimal places.
- **3.** Rabbits were introduced onto an island. The number of rabbits, *P*, *t* years after they were introduced is modelled by the equation

$$P = 80e^{\frac{1}{5}t}, t \in \mathbb{R}, t \ge 0.$$

- (a) Write down the number of rabbits that were first introduced to the island.
- (b) Find the number of years it would take for the number of rabbits to first exceed 1000.
- (c) Find $\frac{dP}{dt}$.
- (d) Find P when $\frac{dP}{dt} = 50$.

4.

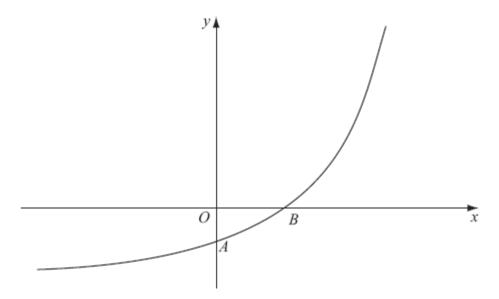


Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = f(x), x \in \mathbb{R}$.

The curve meets the coordinate axes at the points A(0, 1 - k) and $B(\frac{1}{2} \ln k, 0)$, where k is a constant and k > 1, as shown in Figure 2.

On separate diagrams, sketch the curve with equation

- (a) y = f(|x/),
- (b) $y = f^{-1}(x)$.

Show on each sketch the coordinates, in terms of k, of each point at which the curve meets or cuts the axes.

Given that $f(x) = e^{2x} - k$,

- (c) state the range of f,
- (d) find $f^{-1}(x)$,
- (e) write down the domain of f^{-1} .

5. The function f is defined by

$$f(x) = 1 - \frac{2}{(x+4)} + \frac{x-8}{(x-2)(x+4)}, \quad x \in \mathbb{R}, \ x \neq -4, \ x \neq 2.$$

(a) Show that
$$f(x) = \frac{x-3}{x-2}$$
.

The function g is defined by

$$g(x) = \frac{e^x - 3}{e^x - 2}, \quad x \in \mathbb{R}, \ x \neq \ln 2.$$

- (b) Differentiate g(x) to show that $g'(x) = \frac{e^x}{(e^x 2)^2}$.
- (c) Find the exact values of x for which g'(x) = 1

M2 consolidation

6. A particle of mass 0.25 kg is moving with velocity $(3\mathbf{i} + 7\mathbf{j})$ m s⁻¹ when it receives the impulse $(5\mathbf{i} - 3\mathbf{j})$ N s.

Find the speed of the particle immediately after the impulse. *Hint: Use the M1 Impulse Momentum principle, but with vectors now instead. Remember speed means the magnitude!*

- 7. A truck of mass of 300 kg moves along a straight horizontal road with a constant speed of 10 m s^{-1} . The resistance to motion of the truck has magnitude 120 N.
 - (a) Find the rate at which the engine of the truck is working.

On another occasion the truck moves at a constant speed up a hill inclined at θ to the horizontal, where $\sin \theta = \frac{1}{14}$. The resistance to motion of the truck from non-gravitational forces remains of magnitude 120 N. The rate at which the engine works is the same as in part (a).

(b) Find the speed of the truck.

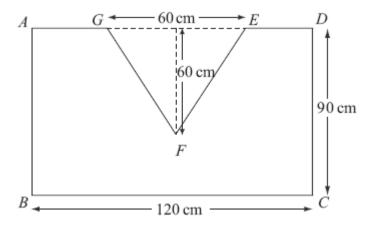


Figure 2

A shop sign ABCDEFG is modelled as a uniform lamina, as illustrated in Figure 2. ABCD is a rectangle with BC = 120 cm and DC = 90 cm. The shape EFG is an isosceles triangle with EG = 60 cm and height 60 cm. The mid-point of AD and the mid-point of EG coincide.

(a) Find the distance of the centre of mass of the sign from the side AD.

The sign is freely suspended from A and hangs at rest.

(b) Find the size of the angle between AB and the vertical.

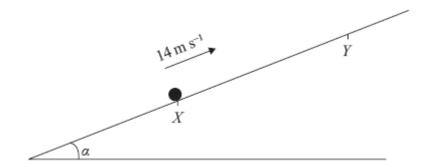


Figure 4

A particle P of mass 2 kg is projected up a rough plane with initial speed 14 m s⁻¹, from a point X on the plane, as shown in Figure 4. The particle moves up the plane along the line of greatest slope through X and comes to instantaneous rest at the point Y. The plane is inclined at an angle α to the horizontal, where $\tan \alpha = \frac{7}{24}$. The coefficient of friction between the particle and the plane is $\frac{1}{8}$.

(a) Use the work-energy principle to show that XY = 25 m.

After reaching *Y*, the particle *P* slides back down the plane.

(b) Find the speed of P as it passes through X.

10. A particle is projected at an angle θ from the horizontal at a height of 100m from the ground with speed 30m/s. Find the speed it hits the ground. *think about the quickest way of doing this!*

C4 consolidation

- **11.** (a) Use integration by parts to find $\int xe^x dx$.
 - (b) Hence find $\int x^2 e^x dx$.
- **12.** A curve has equation $3x^2 y^2 + xy = 4$. The points *P* and *Q* lie on the curve. The gradient of the tangent to the curve is $\frac{8}{3}$ at *P* and at *Q*.
 - (a) Use implicit differentiation to show that y 2x = 0 at P and at Q.
 - (b) Find the coordinates of P and Q.
- 13. Relative to a fixed origin, the points A, B, and C have position vectors $(2\mathbf{i} \mathbf{j} + 6\mathbf{k})$, $(5\mathbf{i} 4\mathbf{j})$ and $(7\mathbf{i} 6\mathbf{j} 4\mathbf{k})$ respectively.
 - (a) Show that A, B and C all lie on a single straight line. (3)

(b)	Write down the ratio AB: BC	(1)
The 1	point <i>D</i> has position vector $(3\mathbf{i} + \mathbf{j} + 4\mathbf{k})$.	
(c)	Show that AD is perpendicular to BD.	(4)
(d)	Find the exact area of triangle ABD	(3)