A2 Assignment Tau Cover Sheet

Name:

Question		Done	BP	Ready	Topic	Comment	
	Aa				C4 Implicit Diff – $xy = sin^2$	$\frac{y}{\sin 2y - x}$	
Drill	Ab				C4 Implicit Diff $-\tan(2x + y) = x$	$\cos^2(2x+y)-2$	
	Ac				C4 Implicit Diff $-e^{(xy)} = 4$	$-\frac{y}{x}$	
	Ba				C3 Functions – MOD sketch	Check using autograph/desmos	
	Bb				C3 Functions – MOD sketch	Check using autograph/desmos	
	Bc				C3 Functions – MOD sketch	Check using autograph/desmos	
	Ca				C4 Parametric – dy/dx chain rule	1	
	Cb				C4 Parametric – dy/dx chain rule	$\frac{t}{-\frac{2}{5}t^2}$	
	Сс				C4 Parametric – dy/dx chain rule	5	
	Da				C4 Vectors – Find cosine acute angle	cott	
	Da			C4 vectors – i ind cosine acute angie	$\frac{13}{\sqrt{14}\sqrt{26}}$		
	Db				C4 Vectors – Find cosine acute angle	$\frac{3}{7\sqrt{2}}$	
	Dc				C4 Vectors – Find cosine acute angle	$\frac{1}{6}$ *remember it's the acute	
						angle! So mod signs! *	
on	C4 solomon				C4 SOLOMON PAST PAPER	Mark Scheme Below	
	1a				M2 Projectiles – cliff 50m time of flight	5 s	
	1b				M2 Projectiles – horizontal landing dist	130m	
olidati	1c				M2 Projectiles – speed & direction impact	43ms ⁻¹ , 53° to the horizontal	
Applied consolidation	1d				M2 Projectiles – show after T travels 45 deg	Proof	
	2a				M2 Kinematics – given F, vectors, find acc	$14i + 18j \text{ ms}^{-2}$	
	2b				M2 Kinematics – given F, vectors, find sp	37.4 ms ⁻¹	
	3				M2 Power – find max acc given power	$450N, \frac{9}{16} \text{ ms}^{-2}$	
	4a				M2 Power – find power given up slope	50.4kW	
	4b				M2 Power – find max speed up slope	95 kmh ⁻¹	
	5a				C3 Trig – Rmethod, involving 2x	e.g. if using Rcos $R = 13$, $\alpha = 1.176$	
uc	5b				C3 Trig – solve using R method	1.13, 0.0425	
 latic	5ci)				C3 Trig – R method write f(x)max	f(x) = 13	
Core consolidation	5cii)				C3 Trig – R method smallest +ve value x	x = 0.588	
	6a				C3 Functions – show f(x) rearrange	show	
- Jore	6b				C3 Functions – find range f	0 < f(x) < 1/4	
	6с				C3 Functions – find f ¹ and state its domain	$f^{-1}(x) = \frac{1}{x} - 1, 0 < x < \frac{1}{4}$	
	6d				C3 Functions – solve $fg(x) = 1/8$	$x = \pm \sqrt{5}$	

7ai)	C3 Diff – product rule	$e^{3x}(\sin x + 7\cos x)$
7aii)	C3 Diff – product rule involving ln	$3x^{2} \ln (5x+2) + \frac{5x^{3}}{5x+2}$
7b	C3 Diff – quotient rule	
7c	C3 Diff – second derivative & solve	x = 1, -3
8a	C4 Integral – Trapezium rule complete table	e ^{0.32} , e ^{1.28}
8b	C4 Integral – use trapezium rule	4.922
9	C4 Connected rates – balloon inflating	$\frac{5k}{3}$
10a	C4 Diff Eq – partial fractions	$\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$
10b	C4 Diff Eq – find particular solution	$\sec^2 x = \frac{8+4y}{2-y}$
11	C4 Vectors –shortest dist from point to L	$2\sqrt{46}$ * should get $\lambda = 0$ when dotting line with AX line segment *
12	C4 Connected Rates – Area between circles	$\frac{dA}{dt} = -8\pi \text{ cm}^2 \text{s}^{-1}$

A2 Maths with Mechanics Assignment τ (tau)

11 questions including drill, exam style questions and challenge Due after half term w/b 20/2

Drill

Part A Find $\frac{dy}{dx}$ for each of the following functions:

(a)
$$xy = \sin^2 y$$

 $\tan(2x+y) = x$ (c) $e^{xy} = 4$ (b)

(c)
$$e^{xy} = 4$$

Part B Sketch the following functions:

(a)
$$y = 1 - |x + 2|$$

 $y = 3|\sin x|$ (c) $y = 2\ln|x| + 2$

Part C Find $\frac{dy}{dx}$ using the chain rule, for each of the following functions:

(a)
$$x = t^2 + 1$$
$$y = 2t$$

 $(b) x = \frac{5}{t}$

 $x = 1 - \cos t$ (c) $y = \sin t$

(3)

(4)

Part D Find the cosine of the acute angle between the following pairs of vectors:

(a)
$$\mathbf{a} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k},$$

$$\mathbf{b} = 5\mathbf{i} + \mathbf{k}$$

(b)
$$a = 6i - 3j + 2k$$
, $b = i + j$

$$\mathbf{b} = \mathbf{i} + \mathbf{j}$$

(c)
$$\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
,

$$\mathbf{b} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$$

C4 SOLOMON L (C4 TOPICS COVERED SO FAR)

The number of people, n, in a queue at a Post Office t minutes after it opens is 1. modelled by the differential equation

$$\frac{\mathrm{d}n}{\mathrm{d}t} = \mathrm{e}^{0.5t} - 5, \quad t \ge 0.$$

- Find, to the nearest second, the time when the model predicts that there will be the least number of people in the queue.
- Given that there are 20 people in the queue when the Post Office opens, solve the differential equation.
- Explain why this model would not be appropriate for large values of t. (c) **(1)**

2. A curve has the equation

$$3x^2 + xy - 2y^2 + 25 = 0.$$

Find an equation for the normal to the curve at the point with coordinates (1, 4), giving your answer in the form ax + by + c = 0, where a, b and c are integers. (8)

3. (a) Use the substitution $u = 2 - x^2$ to find

$$\int \frac{x}{2-x^2} \, \mathrm{d}x. \tag{4}$$

(b) Evaluate

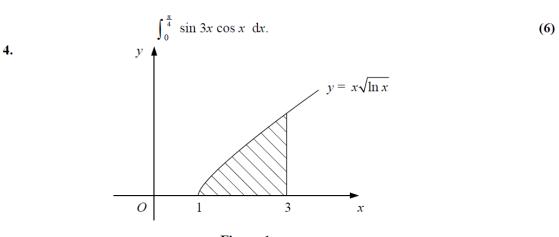


Figure 1

Figure 1 shows the curve with equation $y = x\sqrt{\ln x}$, $x \ge 1$.

The shaded region is bounded by the curve, the x-axis and the line x = 3.

(a) Using the trapezium rule with two intervals of equal width, estimate the area of the shaded region.

(4)

5.
$$f(x) = \frac{5 - 8x}{(1 + 2x)(1 - x)^2}.$$

(a) Express f(x) in partial fractions. (5)

(b) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. (6)

(c) State the set of values of x for which your expansion is valid. (1)

7. The line l_1 passes through the points A and B with position vectors $(3\mathbf{i} + 6\mathbf{j} - 8\mathbf{k})$ and $(8\mathbf{j} - 6\mathbf{k})$ respectively, relative to a fixed origin.

(a) Find a vector equation for
$$l_1$$
. (2)

The line l_2 has vector equation

$$\mathbf{r} = (-2\mathbf{i} + 10\mathbf{j} + 6\mathbf{k}) + \mu(7\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}),$$

where μ is a scalar parameter.

(b) Show that lines
$$l_1$$
 and l_2 intersect. (4)

(c) Find the coordinates of the point where
$$l_1$$
 and l_2 intersect. (2)

The point C lies on l_2 and is such that AC is perpendicular to AB.

(d) Find the position vector of
$$C$$
. (6)

Mechanics Consolidation

- 1. A stone is thrown up at an angle of 30° to the horizontal with a speed of 30 ms⁻¹ from the edge of a cliff 50 m above sea level. If the stone lands in the sea, calculate:
 - a) How long it is in the air,
 - b) How far from the base of the cliff it lands,
 - c) The speed and direction of the stone as it hits the water.
 - d) Show that after T secs it will be travelling at an angle 45⁰ below the horizontal.

where T =
$$\frac{15(\sqrt{3}+1)}{g}$$

- 2. The resultant force **F** Newtons acting on a particle of mass 0.5kg at time *t* s is given by: $\mathbf{F} = (t^2 2)\mathbf{i} + (2t + 3)\mathbf{j}$
 - a) Find an expression for the acceleration of the particle after 3 secs.
 - b) Given that the velocity of the particle at time t = 0 is 4i ms⁻¹, find the speed after 3 secs.
- 3. A car has an engine of maximum power 15kW. Calculate the force resisting the motion of the car when it is travelling at its maximum speed of 120 kmh⁻¹ on a level road. Assuming an unchanged resistance and taking the mass of the car to be 800kg, calculate the maximum acceleration of the car when travelling at 60 kmh⁻¹ on a level road. (Note: UNITS!)
- 4. A car of mass 1 tonne is moving at a constant velocity of 60 km per hour up an inclined road which makes an angle of 6° with the horizontal.

- a) Given that the non-gravitational resistance down the slope is 2000N, find the rate at which the car is working,
- b) If the engine has a maximum power output of 80kw, calculate the maximum speed of the car up the same slope.

Core consolidation

5.
$$f(x) = 5 \cos 2x + 12 \sin 2x.$$

- (a) Using a suitable R-Method involving Rcos or Rsin, find the value of R and the value of α to 3 decimal places.
 - (b) Hence solve the equation

$$5\cos 2x + 12\sin 2x = 6$$
 for $0 \le x < \pi$.

- (c) (i) Write down the maximum value of f(x)
 - (ii) Find the smallest positive value of x for which this maximum value occurs.
- 6. The function f is defined by

f:
$$x \mapsto \frac{2(x-1)}{x^2 - 2x - 3} - \frac{1}{x - 3}, x > 3.$$

- (a) Show that $f(x) = \frac{1}{x+1}$, x > 3.
- (b) Find the range of f.
- (c) Find $f^{-1}(x)$. State the domain of this inverse function.

The function g is defined by

g:
$$x \mapsto 2x^2 - 3$$
, $x \in \mathbb{R}$.

(d) Solve
$$fg(x) = \frac{1}{8}$$
.

- 7. (a) Differentiate with respect to x,
 - (i) $e^{3x} (\sin x + 2 \cos x)$,
 - (ii) $x^3 \ln (5x + 2)$.

Given that
$$y = \frac{3x^2 + 6x - 7}{(x+1)^2}$$
, $x \ne 1$,

(b) Show that
$$\frac{dy}{dx} = \frac{20}{(x+1)^3}$$
.

(c) Hence find
$$\frac{d^2y}{dx^2}$$
 and the real values of x for which $\frac{d^2y}{dx^2} = -\frac{15}{4}$.

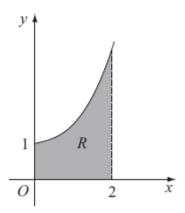


Figure 1

Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Copy and complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

x	0	0.4	0.8	1.2	1.6	2
у	e^0	$e^{0.08}$		$e^{0.72}$		e^2

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

9. A spherical balloon is being blown up at a rate proportional to its volume at the time. Given the volume of a sphere is $\frac{4}{3}\pi r^3$, find the rate of change of the radius of the balloon in terms of k at the moment when the radius is 5cm.

10. (a) Express $\frac{2}{4-y^2}$ in partial fractions.

(b) Hence obtain the solution of

$$2 \cot x \, \frac{\mathrm{d}y}{\mathrm{d}x} = (4 - y^2)$$

for which y = 0 at $x = \frac{\pi}{3}$, giving your answer in the form $\sec^2 x = g(y)$.

- 11. There is a line with equation $\underline{\mathbf{r}} = (4\underline{\mathbf{i}} 3\underline{\mathbf{j}} 7\underline{\mathbf{k}}) + \lambda(3\underline{\mathbf{i}} 3\underline{\mathbf{j}} + 2\underline{\mathbf{k}})$. A has position vector $(2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 5\underline{\mathbf{k}})$, find the shortest distance from the line to A.
 - 12 At a given instant, the radii of two concentric circles are 8cm and 12cm. The radius of the outer circle is increasing at a rate of 1cm $\rm s^{-1}$, and the radius of the inner circle is increasing at a rate of 2cm $\rm s^{-1}$. Find the rate of change of the area enclosed by the two circles at that instant.

C4 Paper L - Marking Guide

1. (a)
$$\frac{dn}{dt} = 0 \implies e^{0.5t} = 5$$
 M1
 $t = 2 \ln 5 = 3.219 \text{ mins} = 3 \text{ mins } 13 \text{ secs}$ M1 A1
(b) $\int dn = \int (e^{0.5t} - 5) dt$
 $n = 2e^{0.5t} - 5t + c$ M1 A1
 $t = 0, n = 20 \implies 20 = 2 + c, c = 18$ M1
 $n = 2e^{0.5t} - 5t + 18$ A1
(c) as t increases, n rapidly becomes very large \therefore not realistic B1 (8)

2.
$$6x + y + x \frac{dy}{dx} - 4y \frac{dy}{dx} = 0$$
 M1 A2
 $(1, 4) \Rightarrow 6 + 4 + \frac{dy}{dx} - 16 \frac{dy}{dx} = 0, \quad \frac{dy}{dx} = \frac{2}{3}$ M1 A1
grad of normal $= -\frac{3}{2}$ M1
 $\therefore y - 4 = -\frac{3}{2}(x - 1)$ M1
 $2y - 8 = -3x + 3$
 $3x + 2y - 11 = 0$ A1 (8)

3. (a)
$$u = 2 - x^2 \Rightarrow \frac{du}{dx} = 2x$$
 M1

$$I = \int \frac{1}{u} \times (-\frac{1}{2}) du = -\frac{1}{2} \int \frac{1}{u} du$$
 A1
$$= -\frac{1}{2} \ln |u| + c = -\frac{1}{2} \ln |2 - x^2| + c$$
 M1 A1

(b)
$$= \int_0^{\frac{\pi}{4}} (\frac{1}{2} \sin 4x + \frac{1}{2} \sin 2x) dx$$
 M1 A1
$$= [-\frac{1}{8} \cos 4x - \frac{1}{4} \cos 2x]_0^{\frac{\pi}{4}}$$
 M1 A1
$$= (\frac{1}{8} - 0) - (-\frac{1}{8} - \frac{1}{4}) = \frac{1}{2}$$
 M1 A1
(10)

4. (a) $x = 1 - \frac{2}{3} - \frac{3}{4} = \frac{3}$

(b)
$$1(x) = 4(1+2x) + 2(1-x) - (1-x)$$

$$(1+2x)^{-1} = 1 + (-1)(2x) + \frac{(-1)(-2)}{2}(2x)^{2} + \frac{(-1)(-2)(-3)}{3\times 2}(2x)^{3} + \dots \qquad M1$$

$$= 1 - 2x + 4x^{2} - 8x^{3} + \dots \qquad \qquad A1$$

$$(1-x)^{-1} = 1 + x + x^{2} + x^{3} + \dots \qquad \qquad B1$$

$$(1-x)^{-2} = 1 + (-2)(-x) + \frac{(-2)(-3)}{2}(-x)^{2} + \frac{(-2)(-3)(-4)}{3\times 2}(-x)^{3} + \dots$$

$$= 1 + 2x + 3x^{2} + 4x^{3} + \dots \qquad \qquad A1$$

$$f(x) = 4(1 - 2x + 4x^{2} - 8x^{3}) + 2(1 + x + x^{2} + x^{3}) - (1 + 2x + 3x^{2} + 4x^{3}) \qquad M1$$

$$= 5 - 8x + 15x^{2} - 34x^{3} + \dots \qquad \qquad A1$$

$$(c) |x| < \frac{1}{2} \qquad \qquad A1 \qquad (12)$$

```
7.
                       \overrightarrow{AB} = (8\mathbf{j} - 6\mathbf{k}) - (3\mathbf{i} + 6\mathbf{j} - 8\mathbf{k}) = (-3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})
                                                                                                                                                M1
                       :. r = (3i + 6j - 8k) + \lambda(-3i + 2j + 2k)
                                                                                                                                                 A1
                    3 - 3\lambda = -2 + 7\mu \tag{1}
           (b)
                       6 + 2\lambda = 10 - 4\mu
                                                            (2)
                       -8 + 2\lambda = 6 + 6\mu
                                                                                                                                                B1
                                                          (3)
                       (3) – (2): -14 = -4 + 10\mu, \mu = -1, \lambda = 4
                                                                                                                                                M1 A1
                       check (1) 3-12=-2-7, true : intersect
                                                                                                                                                B1
                       \mathbf{r} = (-2\mathbf{i} + 10\mathbf{j} + 6\mathbf{k}) - (7\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}) \therefore (-9, 14, 0)
           (c)
                                                                                                                                                M1 A1
                       \overrightarrow{OC} = [(-2 + 7\mu)\mathbf{i} + (10 - 4\mu)\mathbf{j} + (6 + 6\mu)\mathbf{k}]
           (d)
                       \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = [(-5 + 7\mu)\mathbf{i} + (4 - 4\mu)\mathbf{j} + (14 + 6\mu)\mathbf{k}]
                                                                                                                                                M1 A1
                       \therefore [(-5 + 7\mu)\mathbf{i} + (4 - 4\mu)\mathbf{j} + (14 + 6\mu)\mathbf{k}] \cdot (-3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}) = 0
                                                                                                                                                M1
                            15 - 21\mu + 8 - 8\mu + 28 + 12\mu = 0
                                                                                                                                                 A1
                            \mu = 3 : \overrightarrow{OC} = (19\mathbf{i} - 2\mathbf{j} + 24\mathbf{k})
                                                                                                                                                M1 A1
                                                                                                                                                                  (14)
```