Name:

Que	estion	Done	BP	Ready	Торіс	Comment
	Aa				C4 Integration	$\frac{1}{2}\left(x+\frac{1}{4}\sin 4x\right)+c$
	Ab				C4 Integration	$\frac{1}{3}\tan 3x - x + c$
	Ac				C4 Integration	$\frac{2}{3}\ln 3x-1 + c$
	Ba				C3 e and ln solves	$\frac{1}{2}\ln\frac{3}{2}$
_	Bb				C3 e and ln solves	$4 \text{ or }^{1/4}$
Drill	Bc				C3 e and ln solves	$\frac{3}{7}$
	Ca				C3 Modulus solves	x = 6, x = -2
	Cb				C3 Modulus solves	$\frac{1}{6}$ or $\frac{1}{2}$
	Cc				C3 Modulus solves	$\frac{-5}{2}$ or $\frac{-1}{4}$
	Da				C4 Integration	$x - 2\ln x - \frac{1}{x} + c$
	Db				C4 Integration	$\frac{5x}{2} + \frac{3}{4}\sin 2x + 2\sin^2 x + c$
	Dc				C4 Integration	$\frac{1}{3}\ln\left \sec 3x\right + c$
	1a				C4 Vectors – distance between	$\sqrt{29}$
	1b				C4 Vectors – distance between	√34
	1c				C4 Vectors – distance between	p=3
	2a				C4 Vectors – perpendicular	2
	2b				C4 Vectors – perpendicular	-11
	2c				C4 Vectors – perpendicular	$\frac{7}{2}$
	3a				C4 Vectors – direction vector	$\underline{AB} = 5\underline{i} + 5\underline{k}$
	3b				C4 Vectors – equation of a line	Position vector $+ \lambda(5\mathbf{j} + 5\mathbf{k})$ or equivalent
	3c				C4 Vectors – point on line	Yes
X	4				C4 connected rates of change	dC/dt = 2/3
WOI	5				C4 vectors	В
Current work	ба				M2 COM – Area of triangle given centroid	$\sqrt{3} d^2/3$ (remember, centroid of a triangle is always 2/3 of the way down from each vertex!!)
	6b				M2 COM – COM lamina triangle removed	Proof
	6с				M2 COM – angle of suspension with	22.4 degrees
	7a				vertical M2 Kinematics – given a, find when v is zero	t = 1/3, t = 3
	7b				M2 Kinematics – given a, find distance travel	proof
	8a				M2 Kinematics – vectors, velocity, find acc	6 <i>t</i> i-4j
	8b				M2 Kinematics – vectors, velocity, find force	6.32 N

	9a	M2 COM – Square removed from	5a/6
		square	
	9b	M2 COM – Suspended, find angle	35.5°
		with vert	
	10a	C3 e & ln equations	<i>x</i> = 2
	10b	C3 e & ln equations	$x = \ln 3, x = 0$
	11a	C3 differentiation	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$
	11b	C3 turning points	$x = 0, y = 0 \text{ and } x = -2, y = 4e^{-2}$
	11c	C3 differentiation	$\frac{d^2 y}{dx^2} = x^2 e^x + 2x e^x + 2x e^x + 2e^x$
	12d	C3 nature of turning points	x = 0 is a minimum, $x = -2$ is a maximum
ц	12a	C3 rewrite to iterative formula	
idatio	12b	C3 iteration	$x_2 = 0.6455, x_3 = 0.6517, x_4 = 0.6526$
Consolidation	12c	C3 show root is correct	choose interval [0.6525, 0.6535], use change in sign method
0	13a	C3 composite function	ln 3
	13b	C3 inverse function	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$, Domain $x \in$
			R
	13c	C3 modulus	check using calculator, desmos or
			autograph
	13d	C3 modulus solve	x = 11/3, x = 7/3
	Ch	Challenge	$6\pi(2-\sqrt{3})$

	α	β	γ	δ	ε	ζ	η	θ	ı	к	λ	μ	ν	ų	0	π	ρ	σ	τ	υ	φ	χ	ψ	ω
--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----------	---	---	---	---	---	---

"Logic, like whiskey, loses its beneficial effects when taken in too large quantities."

Lord Dunsany

A2 Maths with Mechanics Assignment σ (sigma) Due in w/b 19/2

Drill

Part A Integrate the following functions with respect to *x*:

(a) $\cos^2 2x$ (b) $\tan^2 3x$ (c) $\frac{2}{3r-1}$

Part B Solve the following equations giving *x* exactly:

(a) $2e^x = 3e^{-x}$ (b) $\log_2 x = 4\log_x 2$ (c) $\log_2(1-3x) - \log_2(2x-1) = 1$

Part C Solve the following equations:

(a) |x-2| = 4 (b) 2|3x-1|-1=0 (c) |x-2| = 3|x+1|

Part D Integrate the following with respect to *x*:

(a)
$$\int \left(1 - \frac{1}{x}\right)^2 dx$$
 (b) $\int \left(\sin x + 2\cos x\right)^2 dx$ (c) $\int \tan 3x \, dx$

C4

1. Find the distance between the points with the following position vectors:

(a) $a = 4i + j + k$, $b = 2i - 4j + k$
--

(b) a = i + 2j + 3k, b = i - 3j

(c) Given the distance between the points with position vectors

 $\mathbf{a} = p\mathbf{i} + \mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = 3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ is 5, find p

2. Given that the following vectors are perpendicular, find the value of *p*:

(a)
$$\mathbf{a} = p\mathbf{i} + \mathbf{j} + \mathbf{k},$$
 $\mathbf{b} = 3\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$

- (b) a = 3i + j + k, b = 4i + pj k
- (c) a = 3i + j 2k, b = 3i 2j + pk
- 3. Point A has position vector $3\mathbf{i} + 5\mathbf{j} 2\mathbf{k}$ and point B has position vector $3\mathbf{i} + 10\mathbf{j} + 3\mathbf{k}$
 - (a) Find \overrightarrow{AB}
 - (b) Give the vector equation of the line passing through A and B in its simplest form
 - (c) Does the point (3,-5,-12) lie on this line?
- **4.** A circular ink blot is spreading at a rate of 1/3cm²s⁻¹. Find the rate of increase in the X:\Maths\TEAM - A2\A2 assignments 17-18\A2 Mechanics\MPM2(18)sigma 17-18.docx Updated: 01/02/2018

5. For this question decide which of the responses given is (are) correct then choose

A if 1, 2 and 3 are correct B if only 1 and 2 are correct C if only 2 and 3 are correct D if only 1 is correct E if only 3 is correct

$$\overrightarrow{OP} = -2\underline{i} + 3\underline{j} + \underline{k}$$

$$\overrightarrow{OQ} = 3\underline{i} - 2\underline{j} + \underline{k}$$

1. $\overrightarrow{PQ} = +5\mathbf{i} - 5\mathbf{j}$
2. $\overrightarrow{OP}.\overrightarrow{OQ} = -11$
3. $\angle POQ = \arccos\left(-\frac{11}{\sqrt{14}}\right)$

M2

6.

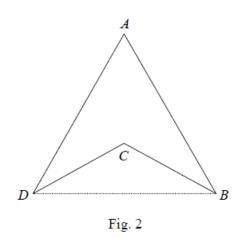


Figure 2 shows a uniform lamina *ABCD* formed by removing an isosceles triangle *BCD* from an equilateral triangle *ABD* of side 2*d*. The point *C* is the centroid of triangle *ABD*.

- (a) Find the area of triangle BCD in terms of d.
- (b) Show that the distance of the centre of mass of the lamina from BD is $\frac{4}{9}\sqrt{3} d$.

(8 marks)

(3 marks)

The lamina is freely suspended from the point B and hangs at rest.

(c) Find in degrees, correct to 1 decimal place, the acute angle that the side AB makes with the vertical.

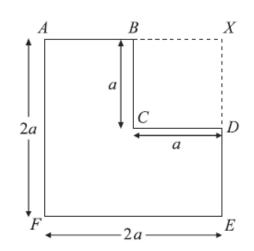
(4 marks)

7.

A particle *P* moves in a straight line with an acceleration of $(6t - 10) \text{ m s}^{-2}$ at time *t* seconds. Initially *P* is at *O*, a fixed point on the line, and has velocity 3 m s⁻¹.

- (a) Find the values of t for which the velocity of P is zero. (6 marks)
- (b) Show that, during the first two seconds, P travels a distance of $6\frac{26}{27}$ m. (7 marks)

8. A particle *P* of mass 0.5 kg moves under the action of a single force **F** Newtons. At time *t* seconds, the velocity **v** m s⁻¹ of *P* is given by


Figure 1

$$\mathbf{v} = 3t^2\mathbf{i} + (1 - 4t)\mathbf{j}.$$

Find

- (*a*) the acceleration of *P* at time *t* seconds,
- (*b*) the magnitude of **F** when t = 2.

9

A uniform lamina *ABCDEF* is formed by taking a uniform sheet of card in the form of a square *AXEF*, of side 2*a*, and removing the square *BXDC* of side *a*, where *B* and *D* are the mid-points of *AX* and *XE* respectively, as shown in Figure 1.

(a) Find the distance of the centre of mass of the lamina from AF.

The lamina is freely suspended from *A* and hangs in equilibrium.

- (b) Find, in degrees to one decimal place, the angle which AF makes with the vertical.
- **C3**
- 10. Find the exact solutions to the equations

 $(a)\ln x + \ln (x-1) = \ln 6,$

 $(b)e^{x} + 3e^{-x} = 4$

11. A curve *C* has equation $y = x^2 e^x$.

(a) Find
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

(b)Hence find the coordinates of the turning points of C.

(c) Find
$$\frac{d^2 y}{dx^2}$$
.

(d) Determine the nature of each turning point of the curve C.

12. $f(x) = -x^3 + 3x^2 - 1$.

(*a*)Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)} \,.$$

(*b*)Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3-x_n}\right)}$$

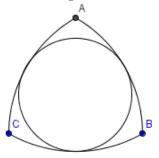
to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

(c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places.

13. The functions f and g are defined by

$$f: x \mapsto \ln (2x-1), \quad x \in \mathbb{R}, \ x > \frac{1}{2},$$

$$g: x \mapsto \frac{2}{x-3}, \qquad x \in \mathbb{R}, \ x \neq 3.$$


(a) Find the exact value of fg(4).

(*b*)Find the inverse function $f^{-1}(x)$, stating its domain.

(c) Sketch the graph of y = |g(x)|. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the *y*-axis.

(*d*)Find the exact values of x for which $\left|\frac{2}{x-3}\right| = 3$.

Challenge

The curvy shape ABD shown here is called a Reuleaux triangle (after French engineer Franz Reuleaux (1829-1905)). Its perimeter consists of three equal arcs AB, BC, CA; each with the same radius and centered at the opposite vertex. In the Reuleaux triangle shows, each arc has a radius 3cm. What is the area (in cm²) of the inscribed circle?