A2 Assignment rho Cover Sheet

Question		0	¢		Topic	Comment
$\overline{\bar{\circ}}$	Aa				C4 Integration - standard results \& T.Ids	$1-\frac{1}{\sqrt{3}}$
	Ab				C4 Integration - standard results \& T.Ids	$\frac{\pi}{16}-\frac{1}{8}$
	Ac				C4 Integration - standard results \& T.Ids	$\frac{27-e^{3}}{3}$
	Ba				C4 Integration - partial fractions	$\frac{2}{3} \ln k\left\|\frac{x-2}{x+1}\right\|$
	Bb				C4 Integration - partial fractions	$\frac{1}{10} \ln \|2 x-1\|+\frac{7}{5} \ln \|x+2\|+c$
	Bc				C4 Integration - partial fractions	$\frac{1}{4} \ln \frac{3}{2}$
	Ca				C3 Sketching e and ln	Check graph using Autograph/Desmos
	Cb				C3 Sketching e and ln	Check graph using Autograph/Desmos
	Cc				C3 Sketching e and ln	Check graph using Autograph/Desmos
	Da				C4 Integration - parts	$-x \cos x+\sin x+c$
	Db				C4 Integration - parts	$\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}+c$
	Dc				C4 Integration - parts	$2 \ln 2-\frac{3}{4}$
$\begin{aligned} & \text { 曾 } \\ & 3 \\ & = \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1ai				M2 COM - Lamina Find distance AD	1.7a
	1 aii				M2 COM - lamina find distance from AB	1.1 a
	1b				M2 COM - Maximum tilt point	32.5 degrees
	2ai				M2 COM - Frame find distance from AB	$4 \mathrm{a} / 5$
	2aii				M2 COM - Frame find distance from BC	a/2
	2b				M2 COM - Frame mass added s.t. horiz	$\mathrm{m}=\mathrm{akg}$
	2c				M2 COM - Frame mass added s.t. 80 deg	$\mathrm{M}=1.44 \mathrm{a} \mathrm{kg}$
	3a				M2 Projectiles - Find Cartesian eq of proj	$y=x \tan 70-x^{2} \frac{49}{9000} \sec ^{2} 70$
	3b				M2 Projectiles - Find Cartesian eq slope	$y=x \tan 5$
	3c				M2 Projectiles - Find intersection of eqs	$\mathrm{x}=57.2 \mathrm{~m}, \mathrm{y}=5.00 \mathrm{~m}$
	3d				M2 Projectiles - Find distance to origin	57.4 m
	4				C4 Connected rates of change	6/25
	5a				C4 Connected rates of change	$0.00255 \mathrm{~cm} \mathrm{~s}^{-1}$ (3sf)
	5b				C4 Connected rates of change	$0.48 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
	6				C4 Integration by substitution	Show that
	7				C4 Implicit differentiation	tangent $3 x+2 y-6=0$; normal $2 x-3 y+9=0$
	8ai				C3 Composite functions	
	8aii				C3 Composite functions - solve	$x=-4$
	8bi				C3 Inverse function	$\frac{3 x}{x-1}$

8bii				C3 Inverse function - domain	$x \in \mathbb{R} \quad x \neq 1$
9 a				C3 Modulus function - sketch	Check on Desmos/Autograph
9b				C3 Modulus function - solve	$1-\sqrt{6}, 1$
10 a				C3 Rcos	$\sqrt{13} \sin (x+0.588)$
10 b				C3 Rcos - max value	169
10 c				C3 Rcos - solve	$x=2.273$ or $x=5.976$
11 a			C3 Trig proof	Proof	
11 b			C3 Trig sketch	Check on Desmos/Autograph	
11 c				C3 Trig solve	$\theta=20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ}$
12 a				C3 e \& ln problem	5.353
12 b				C3 e \& ln problem	Show
12c				C3 e \& ln problem	$T=13.06 \ldots$

α	β	γ	δ	ε	ζ	η	θ	ι	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"It is easier to square the circle than to get round a mathematician."

A2 Maths with Mechanics Assignment ρ (rho) Due in w/b $\mathbf{5 / 2}$

Drill

Part A Integrate the following functions with respect to x, giving an EXACT answer
(a) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{cosec}^{2} x d x$
(b)
$\int_{0}^{\frac{\pi}{8}} \sin ^{2} 2 x d x$
(c) $\int_{1}^{\ln 3} e^{3 x} d x$

Part B Integrate the following with respect to x using partial fractions:
(a) $\frac{2}{(x+1)(x-2)}$
(b) $\frac{3 x-1}{(2 x-1)(x+2)}$
(c) Evaluate giving an exact answer $\int_{4}^{6} \frac{1}{x^{2}-4} d x$

Part C Sketch the following functions: show all asymptotes clearly
(a) $y=1-e^{-x}$
(b) $y=1-\ln 2 x$
(c) $y=2 e^{-2 x}$

Part D Integrate the following functions with respect to x ,
(a) $\int x \sin x d x$
(b) $\int x^{2} \ln x d x$
(c) $\int_{0}^{\ln 2} x e^{2 x} d x$

M2
1.

A uniform lamina consists of a rectangle $A B C D$, where $A B=3 a$ and $A D=2 a$, with a square hole $E F G A$, where $E F=a$, as shown in the diagram:

a Find the distance of the centre of mass of the lamina from

$$
\text { i } A D, \quad \text { ii } A B
$$

The lamina is balanced on a rough plane inclined to the horizontal at an angle θ. The plane of the lamina is vertical and the inclined plane is sufficiently rough to prevent the lamina from slipping. The side $G B$ is in contact with the plane with G lower than B, as shown in the diagram:

b Find, in degrees to 1 decimal place, the greatest value of θ for which the lamina can rest in equilibrium without toppling.
2.

A thin uniform wire of length $5 a$ is bent to form the shape $A B C D$, where $A B=2 a, B C=2 a$, $C D=a$ and $B C$ is perpendicular to both $A B$ and $C D$, as shown in the diagram:

a Find the distance of the centre of mass of the wire from i $A B$, ii $B C$.
b) A mass m is attached at the point C such that when the wire is suspended from the midpoint of BC, BC hangs horizontally. Given that the wire has a mass of $1 / \mathrm{a} \mathrm{kg}$ per meter, Find m.
c) The mass is replaced by another mass M, attached again at C. The wire is suspended from the midpoint of BC , such that BC hangs at an angle of 80 degrees to the vertical, with B above C. Find the mass M needed to 3 s.f.
3. A golfer hits a golf ball at a speed of $30 \mathrm{~ms}^{-1}$ at 70° to the horizontal up a slope which is angled at 5° to the horizontal.
a) Find the equation of the path of the ball.
b) Find the equation of the slope.
c) By eliminating y from the equations found above, find where the ball lands.
d) How far from O , the point of projection, does the ball land?

C4

4. The volume of a cube is increasing at a rate of $18 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate of increase of a side when the volume is $125 \mathrm{~cm}^{3}$.
5. The diagram above shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is $x \mathrm{~cm}$ and the length of the rod is $5 x \mathrm{~cm}$. The cross-sectional area of the rod is increasing at the constant rate of $0.032 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
(a) Find $\frac{\mathrm{d} x}{\mathrm{~d} t}$ when the radius of the rod is
 2 cm , giving your answer to 3 significant figures.
(b) Find the rate of increase of the volume of the rod when $x=$ 2.
6. Use the substitution $u=1+\sin x$ and integration to show that

$$
\int \sin x \cos x(1+\sin x)^{5} \mathrm{~d} x=\frac{1}{42}(1+\sin x)^{6}[6 \sin x-1]+\text { constant. }
$$

C3

7. Find the tangent and normal to $y^{2} e^{x}+x^{2}=9$ at the point $(0,3)$
8. Functions f and g are defined by

$$
\mathrm{f}: x \mapsto \frac{x}{x-3}, x \in \mathbb{R}, x \neq 3 \quad \mathrm{~g}: x \mapsto \frac{1}{2 x-1}, x \in \mathbb{R}, x \neq \frac{1}{2}
$$

(a)
(i) Show that $\mathrm{gf}(x)=1-\frac{6}{x+3}$.
(ii) Solve $\mathrm{gf}(x)=7$.
(b)
(i) Find an expression for $\mathrm{f}^{-1}(x)$.
(ii) Find the domain of f^{-1}.
9. (a) Sketch, on the same diagram, the graphs of

$$
y=|2 x+1| \text { and } y=4-x^{2}
$$

indicating the coordinates of any points where the graphs meet the axes.
(b) Solve the equation $|2 x+1|=4-x^{2}$, giving the exact value of each root.
10. (a) Express $3 \sin x+2 \cos x$ in the form $R \sin (x+\alpha)$ where $R>0$ and $0<$ $\alpha<\frac{\pi}{2}$.
(b) Hence find the greatest value of $(3 \sin x+2 \cos x)^{4}$.
(c) Solve, for $0<x<2 \pi$, the equation

$$
3 \sin x+2 \cos x=1,
$$

giving your answers to 3 decimal places.
11. (a) Prove that

$$
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=2 \operatorname{cosec} 2 \theta, \quad \theta \neq 90 n^{\circ} .
$$

(b) Sketch the graph of $y=2 \operatorname{cosec} 2 \theta$ for $0^{\circ}<\theta<360^{\circ}$.
(c) Solve, for $0^{\circ}<\theta<360^{\circ}$, the equation

$$
\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=3
$$

giving your answers to 1 decimal place.
12. The amount of a certain type of drug in the bloodstream t hours after it has been taken is given by the formula

$$
x=D \mathrm{e}^{-\frac{-}{8} t},
$$

where x is the amount of the drug in the bloodstream in milligrams and D is the dose given in milligrams.

A dose of 10 mg of the drug is given.
(a) Find the amount of the drug in the bloodstream 5 hours after the dose is given.

Give your answer in mg to 3 decimal places.
A second dose of 10 mg is given after 5 hours.
(b) Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places.

No more doses of the drug are given. At time T hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg .
(c) Find the value of T.

