A2 Assignment rho Cover Sheet

Name:

Qu	estion	Done	BP	Ready	Торіс	Comment						
	Aa				C4 Integration – standard results & T.Ids	$1-\frac{1}{\sqrt{3}}$						
	Ab				C4 Integration – standard results & T.Ids	$\frac{\pi}{16} - \frac{1}{8}$						
	Ac				C4 Integration – standard results & T.Ids	$\frac{27 - e^3}{3}$						
	Ba				C4 Integration – partial fractions	$\frac{2}{3}\ln k \left \frac{x-2}{x+1} \right $						
Drill	Bb				C4 Integration – partial fractions	$\frac{1}{10}\ln 2x-1 + \frac{7}{5}\ln x+2 + c$						
	Вс				C4 Integration – partial fractions	$\frac{1}{4}\ln\frac{3}{2}$						
	Ca				C3 Sketching e and ln	Check graph using Autograph/Desmos						
	Cb				C3 Sketching e and ln	Check graph using Autograph/Desmos						
	Cc				C3 Sketching e and ln	Check graph using Autograph/Desmos						
	Da				C4 Integration - parts							
	Db				C4 Integration - parts	$\frac{-x\cos x + \sin x + c}{\frac{x^3}{3}\ln x - \frac{x^3}{9} + c}$						
	Dc				C4 Integration - parts	$2\ln 2 - \frac{3}{4}$						
	1ai				M2 COM – Lamina Find distance AD	1.7a						
	1aii				M2 COM – lamina find distance from AB	1.1 a						
	1b				M2 COM – Maximum tilt point	32.5 degrees						
	2ai				M2 COM – Frame find distance from AB	4a/5						
	2aii				M2 COM – Frame find distance from BC	a/2						
	2b				M2 COM – Frame mass added s.t. horiz	m = a kg						
	2c				M2 COM – Frame mass added s.t. 80 deg	M = 1.44a kg						
Current work	3a				M2 Projectiles – Find Cartesian eq of proj	$y = x \tan 70 - x^2 \frac{49}{9000} \sec^2 70$						
ren	3b				M2 Projectiles – Find Cartesian eq slope	y = xtan5						
	3c				M2 Projectiles – Find intersection of eqs	x = 57.2 m, y = 5.00 m						
	3d				M2 Projectiles – Find distance to origin	57.4 m						
	4				C4 Connected rates of change	6/25						
	5a				C4 Connected rates of change	0.00255 cm s ⁻¹ (3sf)						
	5b				C4 Connected rates of change	$0.48 \text{ cm}^3 \text{ s}^{-1}$						
	6				C4 Integration by substitution	Show that						
	7				C4 Implicit differentiation	tangent 3x+2y-6=0; normal 2x-3y+9=0						
	8ai				C3 Composite functions	tangent $3x + 2y = 0 = 0$, normal $2x = 3y + 3 = 0$						
	8aii				*	x = 1						
					C3 Composite functions – solve	x = -4						
	8bi				C3 Inverse function	$\frac{3x}{x-1}$						
L	<u> </u>					$\lambda = 1$						

8bii	C3 Inverse function - domain	$x \in \mathbb{R}$ $x \neq 1$
9a	C3 Modulus function - sketch	Check on Desmos/Autograph
9b	C3 Modulus function - solve	$1-\sqrt{6}$, 1
10a	C3 Rcos	$\sqrt{13} \sin{(x+0.588)}$
10b	C3 Rcos – max value	169
10c	C3 Rcos – solve	x = 2.273 or $x = 5.976$
11a	C3 Trig proof	Proof
11b	C3 Trig sketch	Check on Desmos/Autograph
11c	C3 Trig solve	θ = 20.9°,69.1°, 200.9°,249.1°
12a	C3 e & ln problem	5.353
12b	C3 e & ln problem	Show
12c	C3 e & ln problem	T = 13.06

α	β	γ	δ	ε	5	η	θ	ı	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	υ	φ	χ	Ψ	ω

"It is easier to square the circle than to get round a mathematician."

Augustus De Morgan

A2 Maths with Mechanics Assignment ρ (rho). **Due in w/b 5/2**

Drill

Part A Integrate the following functions with respect to x, giving an EXACT answer

(a)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \csc^2 x dx$$
 (b) $\int_{0}^{\frac{\pi}{8}} \sin^2 2x dx$ (c) $\int_{1}^{\ln 3} e^{3x} dx$

Part B Integrate the following with respect to x using partial fractions:

(a)
$$\frac{2}{(x+1)(x-2)}$$
 (b)
$$\frac{3x-1}{(2x-1)(x+2)}$$

(c) Evaluate giving an exact answer
$$\int_{-x^2-4}^{6} dx$$

Part C Sketch the following functions: show all asymptotes clearly

(a)
$$y=1-e^{-x}$$
 (b) $y=1-\ln 2x$ (c) $y=2e^{-2x}$

Part D Integrate the following functions with respect to x,

(a)
$$\int x \sin x \, dx$$
 (b) $\int x^2 \ln x \, dx$ (c) $\int_0^{\ln 2} x e^{2x} dx$

M2

1.

A uniform lamina consists of a rectangle *ABCD*, where AB = 3a and AD = 2a, with a square hole *EFGA*, where EF = a, as shown in the diagram:

a Find the distance of the centre of mass of the lamina from i AD, ii AB.

The lamina is balanced on a rough plane inclined to the horizontal at an angle θ . The plane of the lamina is vertical and the inclined plane is sufficiently rough to prevent the lamina from slipping. The side GB is in contact with the plane with G lower than B, as shown in the diagram:

b Find, in degrees to 1 decimal place, the greatest value of θ for which the lamina can rest in equilibrium without toppling.

2.

A thin uniform wire of length 5a is bent to form the shape ABCD, where AB = 2a, BC = 2a, CD = a and BC is perpendicular to both AB and CD, as shown in the diagram:

- a Find the distance of the centre of mass of the wire fromi AB,ii BC.
- b) A mass m is attached at the point C such that when the wire is suspended from the midpoint of BC, BC hangs horizontally. Given that the wire has a mass of 1/a kg per meter, Find m.
- c) The mass is replaced by another mass M, attached again at C. The wire is suspended from the midpoint of BC, such that BC hangs at an angle of 80 degrees to the vertical, with B above C. Find the mass M needed to 3s.f.
- 3. A golfer hits a golf ball at a speed of 30ms⁻¹ at 70° to the horizontal up a slope which is angled at 5° to the horizontal.
- a) Find the equation of the path of the ball.
- b) Find the equation of the slope.
- c) By eliminating y from the equations found above, find where the ball lands.
- d) How far from O, the point of projection, does the ball land?

C4

- The volume of a cube is increasing at a rate of 18cm³s⁻¹. Find the rate of increase of a side when the volume is 125cm³.
- The diagram above shows a right circular cylindrical metal rod 5. which is expanding as it is heated. After t seconds the radius of the rod is x cm and the length of the rod is 5x cm. The cross-sectional area of the rod is increasing at the constant rate of $0.032 \text{ cm}^2 \text{ s}^{-1}$.
 - Find $\frac{dx}{dt}$ when the radius of the rod is 2 cm, giving your answer to 3 significant figures.
 - (b) Find the rate of increase of the volume of the rod when x =
- 6. Use the substitution $u = 1 + \sin x$ and integration to show that

$$\int \sin x \cos x (1 + \sin x)^5 dx = \frac{1}{42} (1 + \sin x)^6 [6 \sin x - 1] + \text{constant.}$$

C3

- Find the tangent and normal to $y^2e^x + x^2 = 9$ at the point (0,3) 7.
- 8. Functions f and g are defined by

$$f: x \mapsto \frac{x}{x-3}, x \in \mathbb{R}, x \neq 3$$
 $g: x \mapsto \frac{1}{2x-1}, x \in \mathbb{R}, x \neq \frac{1}{2}$

- (i) Show that $gf(x)=1-\frac{6}{x+3}$. (ii) Solve gf(x)=7. (a)
- Find an expression for $f^{-1}(x)$. (b)
- (ii) Find the domain of f^{-1} .
- 9. Sketch, on the same diagram, the graphs of (a) y = |2x+1| and $y = 4-x^2$

indicating the coordinates of any points where the graphs meet the axes.

- Solve the equation $|2x+1| = 4 x^2$, giving the exact value of each root. (b)
- 10. (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where R > 0 and $0 < \infty$ $\alpha < \frac{\pi}{2}$.
 - (*b*) Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$.
 - Solve, for $0 < x < 2\pi$, the equation (c)

$$3 \sin x + 2 \cos x = 1$$
,

giving your answers to 3 decimal places.

11. (a) Prove that

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2 \csc 2\theta, \quad \theta \neq 90n^{\circ}.$$

- (b) Sketch the graph of $y = 2 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$.
- (c) Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 3$$

giving your answers to 1 decimal place.

12. The amount of a certain type of drug in the bloodstream *t* hours after it has been taken is given by the formula

$$x = De^{-\frac{1}{8}t},$$

where x is the amount of the drug in the bloodstream in milligrams and D is the dose given in milligrams.

A dose of 10 mg of the drug is given.

(a) Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places.

A second dose of 10 mg is given after 5 hours.

(b) Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places.

No more doses of the drug are given. At time T hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg.

(c) Find the value of T.