Question		0	$\stackrel{\text { ¢ }}{\text { ¢ }}$	帝	Topic	Comment
$\overline{\bar{\circ}}$	Aa				C4 Integration	$\frac{1}{2}\left(x+\frac{1}{4} \sin 4 x\right)+c$
	Ab				C4 Integration	$\frac{1}{3} \tan 3 x-x+c$
	Ac				C4 Integration	$\frac{2}{3} \ln \|3 x-1\|+c$
	Ba				C3 e and ln solves	$\frac{1}{2} \ln \frac{3}{2}$
	Bb				C3 e and ln solves	4 or $1 / 4$
	Bc				C3 e and ln solves	$\frac{3}{7}$
	Ca				C3 Modulus solves	$x=6, \mathrm{x}=-2$
	Cb				C3 Modulus solves	$\frac{1}{6} \text { or } \frac{1}{2}$
	Cc				C3 Modulus solves	$\frac{-5}{2} \text { or } \frac{-1}{4}$
	Da				C4 Integration	$x-2 \ln x-\frac{1}{x}+c$
	Db				C4 Integration	$\frac{5 x}{2}+\frac{3}{4} \sin 2 x+2 \sin ^{2} x+c$
	Dc				C4 Integration	$\frac{1}{3} \ln \|\sec 3 x\|+c$
	1a				C4 Vectors - distance between	$\sqrt{ } 29$
	1b				C4 Vectors - distance between	$\sqrt{ } 34$
	1c				C4 Vectors - distance between	$\mathrm{p}=3$
	2a				C4 Vectors - perpendicular	2
	2b				C4 Vectors - perpendicular	-11
	2c				C4 Vectors - perpendicular	$\frac{7}{2}$
	3a				C4 Vectors - direction vector	$\underline{\mathrm{AB}}=5 \mathrm{j}+5 \underline{\mathrm{k}}$
	3b				C4 Vectors - equation of a line	Position vector $+\lambda(5 \mathbf{j}+5 \mathbf{k})$ or equivalent
	3c				C4 Vectors - point on line	Yes
	4a				M2 COM - Area of triangle given centroid	$\sqrt{3} \mathrm{~d}^{2} / 3$ (remember, centroid of a triangle is always $2 / 3$ of the way down from each vertex!!)
	4b				M2 COM - COM lamina triangle removed	Proof
	4c				M2 COM - angle of suspension with vertical	22.4 degrees
	5a				C3 e \& \ln equations	$x=2$
	5b				C3 e \& \ln equations	$x=\ln 3, x=0$
	6a				C3 differentiation	$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}$
	6b				C3 turning points	$x=0, y=0$ and $x=-2, y=4 \mathrm{e}^{-2}$
	6 c				C3 differentiation	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}$
	6d				C3 nature of turning points	$x=0$ is a minimum, $x=-2$ is a maximum
	7 a				C3 rewrite to iterative formula	

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ	ω

"Logic, like whiskey, loses its beneficial effects when taken in too large quantities."

A2 Maths with Mechanics Assignment ρ (rho)
 Due in w/b 30/1

Drill

Part A Integrate the following functions with respect to x :
(a)
$\cos ^{2} 2 x$
(b) $\tan ^{2} 3 x$
(c) $\frac{2}{3 x-1}$

Part B Solve the following equations giving x exactly:
(a) $\quad 2 e^{x}=3 e^{-x}$
(b) $\quad \log _{2} x=4 \log _{x} 2$
(c) $\log _{2}(1-3 x)-\log _{2}(2 x-1)=1$

Part C Solve the following equations:
(a) $\quad|x-2|=4$
(b) $\quad 2|3 x-1|-1=0$
(c) $\quad|x-2|=3|x+1|$

Part D Integrate the following with respect to x :
(a) $\int\left(1-\frac{1}{x}\right)^{2} \mathrm{~d} x$
(b) $\int(\sin x+2 \cos x)^{2} d x$
(c) $\int \tan 3 x d x$

Current work: C4 Vectors

1. Find the distance between the points with the following position vectors:
(a) $\quad \mathbf{a}=4 \mathbf{i}+\mathbf{j}+\mathbf{k}, \quad \mathbf{b}=2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$
(b) $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}, \quad \mathbf{b}=\mathbf{i}-3 \mathbf{j}$
(c) Given the distance between the points with position vectors

$$
\mathbf{a}=p \mathbf{i}+\mathbf{j}-2 \mathbf{k}, \quad \mathbf{b}=3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k} \text { is } 5, \text { find } p
$$

2. Given that the following vectors are perpendicular, find the value of p :
(a) $\quad \mathbf{a}=p \mathbf{i}+\mathbf{j}+\mathbf{k}, \quad \mathbf{b}=3 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$
(b) $\mathbf{a}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}$,
$\mathbf{b}=4 \mathbf{i}+p \mathbf{j}-\mathbf{k}$
(c) $\mathbf{a}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$,
$\mathbf{b}=3 \mathbf{i}-2 \mathbf{j}+p \mathbf{k}$
3. Point A has position vector $3 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$ and point B has position vector $3 \mathbf{i}+10 \mathbf{j}+3 \mathbf{k}$
(a) Find $\overrightarrow{\mathbf{A B}}$
(b) Give the vector equation of the line passing through A and B in its simplest form
(c) Does the point $(3,-5,-12)$ lie on this line?

Current work: M2

4.

Fig. 2
Figure 2 shows a uniform lamina $A B C D$ formed by removing an isosceles triangle $B C D$ from an equilateral triangle $A B D$ of side $2 d$. The point C is the centroid of triangle $A B D$.
(a) Find the area of triangle $B C D$ in terms of d.
(b) Show that the distance of the centre of mass of the lamina from $B D$ is $\frac{4}{9} \sqrt{3} d$.

The lamina is freely suspended from the point B and hangs at rest.
(c) Find in degrees, correct to 1 decimal place, the acute angle that the side $A B$ makes with the vertical.

C3 Consolidation

5. Find the exact solutions to the equations
(a) $\ln x+\ln (x-1)=\ln 6$,
(b) $\mathrm{e}^{x}+3 \mathrm{e}^{-x}=4$
6. A curve C has equation $y=x^{2} \mathrm{e}^{x}$.
(a)Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(b)Hence find the coordinates of the turning points of C.
(c) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(d) Determine the nature of each turning point of the curve C.
7. $\mathrm{f}(x)=-x^{3}+3 x^{2}-1$.
(a) Show that the equation $\mathrm{f}(x)=0$ can be rewritten as

$$
x=\sqrt{\left(\frac{1}{3-x}\right)} .
$$

(b) Starting with $x_{1}=0.6$, use the iteration

$$
x_{n+1}=\sqrt{\left(\frac{1}{3-x_{n}}\right)}
$$

to calculate the values of x_{2}, x_{3} and x_{4}, giving all your answers to 4 decimal places.
(c) Show that $x=0.653$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
8. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto \ln (2 x-1), \quad x \in \mathbb{R}, \quad x>\frac{1}{2}, \\
\mathrm{~g}: x \mapsto \frac{2}{x-3}, & x \in \mathbb{R}, \quad x \neq 3 .
\end{array}
$$

(a) Find the exact value of $\operatorname{fg}(4)$.
(b) Find the inverse function $\mathrm{f}^{-1}(x)$, stating its domain.
(c) Sketch the graph of $y=|\mathrm{g}(x)|$. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis.
(d) Find the exact values of x for which $\left|\frac{2}{x-3}\right|=3$.

M2 consolidation

9.

A particle P moves in a straight line with an acceleration of $(6 t-10) \mathrm{ms}^{-2}$ at time t seconds. Initially P is at O, a fixed point on the line, and has velocity $3 \mathrm{~ms}^{-1}$.
(a) Find the values of t for which the velocity of P is zero.
(b) Show that, during the first two seconds, P travels a distance of $6 \frac{26}{27} \mathrm{~m}$.
10. A particle P of mass 0.5 kg moves under the action of a single force \mathbf{F} Newtons. At time t seconds, the velocity $\mathbf{v ~ m ~ s}$ of P is given by

$$
\mathbf{v}=3 t^{2} \mathbf{i}+(1-4 t) \mathbf{j} .
$$

Find
(a) the acceleration of P at time t seconds,
(b) the magnitude of \mathbf{F} when $t=2$.

Figure 1

A uniform lamina $A B C D E F$ is formed by taking a uniform sheet of card in the form of a square $A X E F$, of side $2 a$, and removing the square $B X D C$ of side a, where B and D are the mid-points of $A X$ and $X E$ respectively, as shown in Figure 1.
(a) Find the distance of the centre of mass of the lamina from $A F$.

The lamina is freely suspended from A and hangs in equilibrium.
(b) Find, in degrees to one decimal place, the angle which $A F$ makes with the vertical.

C4 Consolidation

12. A circular ink blot is spreading at a rate of $1 / 3 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Find the rate of increase in the circumference of the ink blot when its radius is $1 / 2 \mathrm{~cm}$
13. For this question decide which of the responses given is (are) correct then choose
A if 1, 2 and 3 are correct
B if only 1 and 2 are correct
C if only 2 and 3 are correct
D if only 1 is correct
E if only 3 is correct
$\overrightarrow{O P}=-2 \underline{i}+3 \underline{j}+\underline{k}$
$\overrightarrow{O Q}=3 \underline{i}-2 \underline{j}+\underline{k}$
14. $\overrightarrow{\boldsymbol{P Q}}=+5 \boldsymbol{i}-5 \boldsymbol{j}$
15. $\overrightarrow{O P} \cdot \overrightarrow{O Q}=-11$
16. $\angle P O Q=\arccos \left(-\frac{11}{\sqrt{14}}\right)$

Challenge

The curvy shape ABD shown here is called a Reuleaux triangle (after French engineer Franz Reuleaux (1829-1905)). Its perimeter consists of three equal arcs $\mathrm{AB}, \mathrm{BC}, \mathrm{CA}$; each with the same radius and centered at the opposite vertex. In the Reuleaux triangle shows, each arc has a radius 3 cm . What is the area (in cm^{2}) of the inscribed circle?

