Que	estion	Done	BP	Ready	Торіс	Comment
	Aa				C4 Integration	$\frac{1}{2}\left(x + \frac{1}{4}\sin 4x\right) + c$
	Ab				C4 Integration	$\frac{1}{3}\tan 3x - x + c$
	Ac				C4 Integration	$\frac{2}{3}\ln 3x-1 +c$
	Ba				C3 e and ln solves	$\frac{1}{2}\ln\frac{3}{2}$ $4 \text{ or } ^{1}/_{4}$
_	Bb				C3 e and ln solves	$4 \text{ or }^{1}/_{4}$
Drill	Вс				C3 e and ln solves	$\frac{3}{7}$
	Ca				C3 Modulus solves	x = 6, x = -2
	Cb				C3 Modulus solves	$\frac{1}{6}$ or $\frac{1}{2}$
	Сс				C3 Modulus solves	$\frac{-5}{2}$ or $\frac{-1}{4}$
	Da				C4 Integration	$x-2\ln x-\frac{1}{x}+c$
	Db				C4 Integration	$\frac{5x}{2} + \frac{3}{4}\sin 2x + 2\sin^2 x + c$
	Dc				C4 Integration	$\frac{1}{3}\ln\left \sec 3x\right + c$
	1a				C4 Vectors – distance between	$\sqrt{29}$
	1b				C4 Vectors – distance between	$\sqrt{34}$
	1c				C4 Vectors – distance between	p=3
	2a				C4 Vectors – perpendicular	2
	2b				C4 Vectors – perpendicular	-11
	2c				C4 Vectors – perpendicular	$\frac{7}{2}$
¥	3a				C4 Vectors – direction vector	$\underline{\mathbf{AB}} = 5\mathbf{j} + 5\mathbf{k}$
Current work	3b				C4 Vectors – equation of a line	Position vector + $\lambda(5\mathbf{j} + 5\mathbf{k})$ or equivalent
ırre	3c				C4 Vectors – point on line	Yes
Cn	4a				M2 COM – Area of triangle given centroid	$\sqrt{3}$ d ² /3 (remember, centroid of a triangle is always 2/3 of the way down from each vertex!!)
	4b				M2 COM – COM lamina triangle removed	Proof
	4c				M2 COM – angle of suspension with vertical	22.4 degrees
	5a				C3 e & In equations	x=2
	5b				C3 e & In equations	$x = \ln 3, x = 0$
	6a				C3 differentiation	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^x + 2x \mathrm{e}^x$
ion	6b				C3 turning points	$x = 0, y = 0 \text{ and } x = -2, y = 4e^{-2}$
Consolidation	6c				C3 differentiation	$\frac{d^2y}{dx^2} = x^2e^x + 2xe^x + 2xe^x + 2e^x$
Cor	6d				C3 nature of turning points	x = 0 is a minimum, $x = -2$ is a maximum
	7a				C3 rewrite to iterative formula	

7b	C3 iteration	$x_2 = 0.6455, x_3 = 0.6517, x_4 = 0.6526$
7c	C3 show root is correct	choose interval [0.6525, 0.6535],
		use change in sign method
8a	C3 composite function	ln 3
8b	C3 inverse function	$f^{-1}(x) = \frac{1}{2} (e^x + 1)$, Domain $x \in$
		\mathbb{R}
8c	C3 modulus	check using calculator, desmos or autograph
8d	C3 modulus solve	x = 11/3, x = 7/3
9a	M2 Kinematics – given a, find when v is zero	t = 1/3, t = 3
9b	M2 Kinematics – given a, find distance travel	proof
10a	M2 Kinematics – vectors, velocity, find acc	6 <i>t</i> i -4 j
10b	M2 Kinematics – vectors, velocity, find force	6.32 N
11a	M2 COM – Square removed from square	5a/6
11b	M2 COM – Suspended, find angle with vert	35.5°
12	C4 connected rates of change	dC/dt = 2/3
13	C4 vectors	В
Ch	Challenge	$6\pi(2-\sqrt{3})$

"Logic, like whiskey, loses its beneficial effects when taken in too large quantities."

Lord Dunsany

A2 Maths with Mechanics Assignment ρ (rho)

Due in w/b 30/1

Drill

Part A Integrate the following functions with respect to x:

- $\cos^2 2x$
- $\tan^2 3x$ (b)

Part B Solve the following equations giving *x* exactly:

- $2e^{x} = 3e^{-x}$ (a)
- (b)
- $\log_2 x = 4\log_x 2$ (c) $\log_2(1-3x) \log_2(2x-1) = 1$

Part C Solve the following equations:

- (a)
- |x-2|=4 (b) 2|3x-1|-1=0 (c) |x-2|=3|x+1|

Part D Integrate the following with respect to *x*:

- (a) $\int \left(1 \frac{1}{x}\right)^2 dx$ (b) $\int \left(\sin x + 2\cos x\right)^2 dx$ (c) $\int \tan 3x dx$

Current work: C4 Vectors

- 1. Find the distance between the points with the following position vectors:
 - $\mathbf{a} = 4\mathbf{i} + \mathbf{j} + \mathbf{k},$ (a)
- $\mathbf{b} = 2\mathbf{i} 4\mathbf{j} + \mathbf{k}$
 - (b) a = i + 2j + 3k, b = i - 3j
 - Given the distance between the points with position vectors

$$\mathbf{a} = p\mathbf{i} + \mathbf{j} - 2\mathbf{k}, \ \mathbf{b} = 3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$$
 is 5, find p

- 2. Given that the following vectors are perpendicular, find the value of p:
 - (a)
- a = pi + j + k, b = 3i 4j 2k
 - (b) a = 3i + j + k, b = 4i + pj k
 - (c) a = 3i + j 2k, b = 3i 2j + pk
- 3. Point A has position vector $3\mathbf{i} + 5\mathbf{j} 2\mathbf{k}$ and point B has position vector $3\mathbf{i} + 10\mathbf{j} + 3\mathbf{k}$
 - (a) Find AB
 - (b) Give the vector equation of the line passing through A and B in its simplest form
 - (c) Does the point (3,-5,-12) lie on this line?

Current work: M2

4.

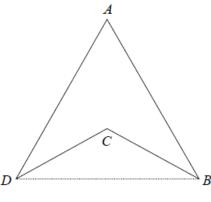


Fig. 2

Figure 2 shows a uniform lamina ABCD formed by removing an isosceles triangle BCD from an equilateral triangle ABD of side 2d. The point C is the centroid of triangle ABD.

(a) Find the area of triangle BCD in terms of d.

(3 marks)

(b) Show that the distance of the centre of mass of the lamina from BD is $\frac{4}{9}\sqrt{3} d$.

(8 marks)

The lamina is freely suspended from the point B and hangs at rest.

(c) Find in degrees, correct to 1 decimal place, the acute angle that the side AB makes with the vertical.

(4 marks)

C3 Consolidation

5. Find the exact solutions to the equations

$$(a) \ln x + \ln (x-1) = \ln 6,$$

$$(b)e^{x} + 3e^{-x} = 4$$

- **6.** A curve *C* has equation $y = x^2 e^x$.
 - (a) Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.
 - (b) Hence find the coordinates of the turning points of C.
 - (c) Find $\frac{d^2y}{dx^2}$.
 - (d) Determine the nature of each turning point of the curve C.
- 7. $f(x) = -x^3 + 3x^2 1$.
 - (a) Show that the equation f(x) = 0 can be rewritten as

$$x = \sqrt{\left(\frac{1}{3-x}\right)}.$$

(b) Starting with $x_1 = 0.6$, use the iteration

$$x_{n+1} = \sqrt{\left(\frac{1}{3 - x_n}\right)}$$

to calculate the values of x_2 , x_3 and x_4 , giving all your answers to 4 decimal places.

- (c) Show that x = 0.653 is a root of f(x) = 0 correct to 3 decimal places.
- **8.** The functions f and g are defined by

$$f: x \mapsto \ln(2x-1), \quad x \in \mathbb{R}, \ x > \frac{1}{2},$$

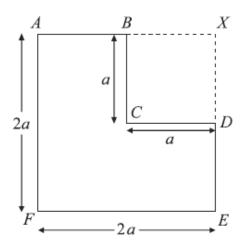
$$g: x \mapsto \frac{2}{x-3}, \qquad x \in \mathbb{R}, \ x \neq 3.$$

- (a) Find the exact value of fg(4).
- (b) Find the inverse function $f^{-1}(x)$, stating its domain.
- (c) Sketch the graph of y = |g(x)|. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis.
- (*d*) Find the exact values of x for which $\left| \frac{2}{x-3} \right| = 3$.

M2 consolidation

9.

A particle P moves in a straight line with an acceleration of (6t - 10) m s⁻² at time t seconds. Initially P is at O, a fixed point on the line, and has velocity 3 m s⁻¹.


- (a) Find the values of t for which the velocity of P is zero. (6 marks)
- (b) Show that, during the first two seconds, P travels a distance of $6\frac{26}{27}$ m. (7 marks)
- **10.** A particle *P* of mass 0.5 kg moves under the action of a single force **F** Newtons. At time *t* seconds, the velocity \mathbf{v} m s⁻¹ of *P* is given by

$$\mathbf{v} = 3t^2\mathbf{i} + (1 - 4t)\mathbf{j}.$$

Find

- (a) the acceleration of P at time t seconds,
- (b) the magnitude of **F** when t = 2.

Figure 1

A uniform lamina ABCDEF is formed by taking a uniform sheet of card in the form of a square AXEF, of side 2a, and removing the square BXDC of side a, where B and D are the mid-points of AX and XE respectively, as shown in Figure 1.

(a) Find the distance of the centre of mass of the lamina from AF.

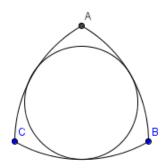
The lamina is freely suspended from *A* and hangs in equilibrium.

(b) Find, in degrees to one decimal place, the angle which AF makes with the vertical.

C4 Consolidation

- **12.** A circular ink blot is spreading at a rate of 1/3cm²s⁻¹. Find the rate of increase in the circumference of the ink blot when its radius is 1/2cm
- 13. For this question decide which of the responses given is (are) correct then choose
 - A if 1, 2 and 3 are correct
 - B if only 1 and 2 are correct
 - C if only 2 and 3 are correct
 - D if only 1 is correct
 - E if only 3 is correct

$$\overrightarrow{OP} = -2\underline{i} + 3\underline{j} + \underline{k}$$


$$\overrightarrow{OQ} = 3\underline{i} - 2\underline{j} + \underline{k}$$

$$\mathbf{1.} \underset{PQ}{\longrightarrow} = +5i - 5j$$

2.
$$\overrightarrow{OP}.\overrightarrow{OQ} = -11$$

3.
$$\angle POQ = \arccos\left(-\frac{11}{\sqrt{14}}\right)$$

Challenge

The curvy shape ABD shown here is called a Reuleaux triangle (after French engineer Franz Reuleaux (1829-1905)). Its perimeter consists of three equal arcs AB, BC, CA; each with the same radius and centered at the opposite vertex. In the Reuleaux triangle shows, each arc has a radius 3cm. What is the area (in cm²) of the inscribed circle?