
A2 Assignment pi Cover Sheet Name:

	Question		BP	Read	Topic	Comment
Drill	Aa				C4 Integral – sin^2	$\frac{\pi}{8} - \frac{1}{4}$
	Ab				C4 Integral – cos^2	$\frac{\pi}{8} + \frac{1}{2\sqrt{2}}$
	Ac				C4 Integral – tan^2	2/3
	Ba				C3 Trig Solve – Double angles	210°, 330°, 270°
	Bb				C3 Trig Solve – sec^2 conversion	292.5, 202.5, 112.5, 22.5 degrees
	Bc				C3 Trig Solve – cosec^2 conversion	60, 180 degrees
	Ca				C3 Functions – sketch $y = 1 - e^2x$	asymptote $y = 1$, crosses $(\ln 0.5, 0)$ and $(0, -1)$
	Cb				C3 Functions – sketch $y = 2 + \ln(x + 1)$	asymptote $x = -1$, crosses $(0, 2)$ and $(-1 + e^{-2}, 0)$
	Сс				C3 Functions – sketch $y = 10e^2x$	asymptote y = 0, crosses (0, 10)
	Da				C4 Parametrics – eliminate t	$y^2 = x^2 + 1$
	Db				C4 Parametrics – eliminate t	$\frac{x^2}{9} + y^2 = 1$
	Dc				C4 Parametrics – eliminate t	
	1a				M2 COM – find AG	AG = 25 cm
	1b				M2 COM – Find angle of AB v Vertical	87.6 degrees
	1c				M2 COM – mass added, AB horizontal	$\frac{64\pi}{3}kg$
	2a				M2 Kinematics – given force find a	$\mathbf{a} = \left(3t^2 - 6\right)i + 4t\mathbf{j}$
	2b				M2 Kinematics – given force find v	proof
	3				C4 Integral – Trapezium Rule 4 strips	1.329
C	4a				C4 Integral – Integrate secx exactly	$ln(2+\sqrt{3})$
О	4b				C4 Integral – Trapezium Rule 6 strips	1.326 (4sf)
n s	4c				C4 Integral – % error	0.687% (using 4.s.f answer)
o 1	5a				C3 Numerical Methods – show root in [2,3]	let $f(x)=x^3$ -14 ,show change of sign
i	5b				C3 Numerical Methods – rearrange eq	7
d	5c				C3 Numerical Methods – find X ₆ to 3s.f.	2.41
a t	5d				C3 Numerical Methods – prove root correct	use upper/lower bound, change in sign method
i	6a				C3 Functions – Mod solve	x = 1/7, x = 7/3
О	6b				C3 Functions – Mod solve	x = -3, x = 2
n	7a	-			C3 Trig – prove $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta$	Proof
	7b				C3 Trig – use proof to find $\sin 3\theta$	$\frac{9\sqrt{3}}{16}$
	8a				C3 Algebra – make single fraction	Proof
	8b				C3 Algebra – show numerator > 0	Proof
	8c				C3 Algebra – show $f(x) > 0$	Proof
	9a				C3 Diff – show P lies on curve	Proof
	9b				C3 Diff – show dy/dx = $1/\sqrt{2}$ @ P	Proof

	9c	C3 Diff – Find normal equation @ P	$y = -\sqrt{2}x + 2 + \frac{\pi}{4}$
	10a	C4 Binomial – expand $(2-x)/\sqrt{4-2x}$	$1 - \frac{x}{4} - \frac{x^2}{32} - \frac{x^3}{128}$
	10b	C4 Binomial – estimate $1.9 / \sqrt{3.8}$	0.97468
	11a	C4 Integral – Pick your own substitution	$-2\ln\left 1-\sqrt{x}\right +2-2\sqrt{x}$
	11b	C4 Integral – by parts	$+c$ $4e^9 - \frac{3}{2}e^4$
	11c	C4 Integral – substitution x = 2sinu	$\frac{\pi}{3}$
	11d	C4 Integral – involving ln	$x^{2}(\ln 3x)^{2} - x^{2}\ln 3x + \frac{1}{2}x^{2} + c$
challenge		Given y is imaginary, find values of x	-4 < x < 0

"I don't believe in mathematics."

Albert Einstein

A2 Maths with Mechanics Assignment $\pi(pi)$

Due in w/b 29/1

Drill

Part A Evaluate, giving exact answers

(a)
$$\int_{0}^{\frac{\pi}{4}} \sin^2 x dx$$
 (b) $\int_{-\frac{\pi}{9}}^{\frac{\pi}{8}} \cos^2 x dx$ (c) $\int_{\frac{\pi}{12}}^{\frac{\pi}{12}} (\tan^2 3x + 1) dx$

*note these two lower limits have a negative sign, not very clear in print

Part B Solve the following equations in the range $0 \le x \le 360^{\circ}$

(a)
$$\cos 2x = 3\sin x + 2$$

(b)
$$\sec^2 2x = 2\tan 2x$$

(c)
$$\csc^2\left(\frac{x}{2}\right) = \sqrt{3}\cot\left(\frac{x}{2}\right) + 1$$

Part C Sketch the following functions: show clearly any asymptotes, vertical and horizontal, and any crossings with the coordinate axes.

(a)
$$y = 1 - 2e^x$$

(b)
$$y = 2 + \ln(x+1)$$

(c)
$$y = 10e^{2x}$$

Part D Eliminate *t* from the following pairs of equations:

(a)
$$x = \tan t, \quad y = \frac{1}{\cos t}$$

(b)
$$x = 3\sin t$$
, $y = \cos t$

Mechanics

1. Figure 1

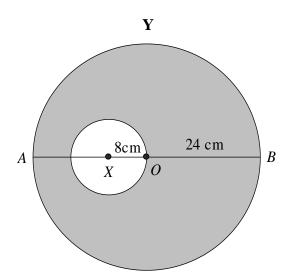


Figure 1 shows a template T made by removing a circular disc, of centre X and radius 8 cm, from a uniform circular lamina, of centre O and radius 24 cm. The point X lies on the diameter AOB of the lamina and AX = 16 cm. The centre of mass of T is at the point G.

- a) Find AG
- b) An axel is inserted through Y such that the axel is perpendicular to AB, and the lamina is left to rotate freely about Y. What is the acute angle between AB and the downward vertical?
- c) With the axel still in place at Y, a mass is attached at the point A such that AB hangs horizontally to the downward vertical. What is the mass required?

2. A particle P of mass 0.5 kg is moving under the action of a single force F newtons. At

t seconds, $\mathbf{F} = (1.5t^2 - 3)\mathbf{i} + 2t\mathbf{j}$. When t = 2, the velocity of P is $(-4\mathbf{i} + 5\mathbf{j}) \,\mathrm{m \, s}^{-1}$.

- (a) Find the acceleration of P at time t seconds.
- (b) Show that, when t = 3, the velocity of P is $(9\mathbf{i} + 15\mathbf{j}) \,\mathrm{ms}^{-1}$.

Pure

- **3.** Find an approximate value to 3 decimal places for $I = \int_{0}^{x} e^{x} \tan x dx$ using four strips.
- **4.** For the integral $I = \int_{1}^{\frac{\pi}{3}} \sec x dx$
- a) Find the exact value of I.
- b) Use the trapezium rule to find an approximation of I using six strips to 4s.f.
- c) Find the percentage error of this approximation.
- Show that $x^3 = 14$ has a root lying between 2 and 3. 5. (a)
 - Show that $x^3 = 14$ can be rearranged into the form $x = \frac{p}{r^2} + \frac{x}{2}$ where p is a (b) constant to be found.
 - Using the iteration formula $x_{n+1} = \frac{p}{x_n^2} + \frac{x_n}{2}$, starting with $x_0 = 2.5$, find x_1 , (c) X2, X3, X4, X5, X6.

Using your answer for x_6 , give a root to 3 significant figures of $x^3 = 14$.

- d) Prove that your answer is correct to 3.s.f.
- Solve the following equations: 6.

(a)
$$|5x-4| = |2x+3|$$

$$|5x-4| = |2x+3|$$
 (b) $|x^2+x| = 6$

(a)Show that 7.

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$$

(b) Given that $\sin \theta = \frac{\sqrt{3}}{4}$, find the exact value of $\sin 3\theta$.

8.
$$f(x) = 1 - \frac{3}{x+2} + \frac{3}{(x+2)^2}, \quad x \neq -2.$$

(a) Show that
$$f(x) = \frac{x^2 + x + 1}{(x+2)^2}, \ x \neq -2.$$

- (b) Show that $x^2 + x + 1 > 0$ for all values of x.
- (c) Show that f(x) > 0 for all values of $x, x \ne -2$.
- **9.** The curve C has equation $x = 2 \sin y$.
 - (a) Show that the point $P\left(\sqrt{2}, \frac{\pi}{4}\right)$ lies on C.
 - (b) Show that $\frac{dy}{dx} = \frac{1}{\sqrt{2}}$ at P.
 - (c) Find an equation of the normal to C at P. Give your answer in the form y = mx + c, where m and c are exact constants.
- **10.** a) Expand $\frac{2-x}{\sqrt{4-2x}}$ in ascending powers of x up to x^3
- b) using your expansion, estimate $\frac{1.9}{\sqrt{3.8}}$ correct to 5. d. p.
- 11. a) using a suitable substitution of your choosing $\int \frac{1}{1-x^{\frac{1}{2}}} dx$
- b) using integration by parts, find the exact integral: $\int_2^3 x^3 e^{x^2} dx$
- c) using the substitution x = 2sinu, $\int_0^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx$
- d) $\int 2x(\ln 3x)^2 dx$

Challenge Question

Given that $y = \frac{x}{x + \left(\frac{x}{x + y}\right)}$, find the range of x values if y is not a real number.

(Hint on the VLE)