	A2 Assi					
Question		Done	BP	Read	Торіс	Comment
Drill	Aa				C4 Integral – sin^2	$\frac{\pi}{8} - \frac{1}{4}$
	Ab				C4 Integral – cos^2	$\frac{\pi}{8} + \frac{1}{2\sqrt{2}}$
	Ac				C4 Integral – tan^2	2/3
	Ba				C3 Trig Solve – Double angles	210°, 330°, 270°
	Bb				C3 Trig Solve – sec^2 conversion	292.5, 202.5, 112.5, 22.5 degrees
	Bc				C3 Trig Solve – cosec^2 conversion	30, 90 degrees
	Ca				C3 Functions – sketch $y = 1 - e^2x$	asymptote $y = 1$, crosses (ln0.5, 0) and (0, -1)
	Cb				C3 Functions – sketch $y = 2 + \ln(x + 1)$	asymptote $x = -1$, crosses (0, 2) and $(-1 - e^{-2}, 0)$
	Cc				C3 Functions – sketch $y = 10e^{2x}$	asymptote y = 0, crosses (0, 10)
	Da				C4 Parametrics – eliminate t	$y^2 = x^2 + 1$
	Db				C4 Parametrics – eliminate t	$\frac{x^2}{9} + y^2 = 1$
	Dc				C4 Parametrics – eliminate t	,
	TT3A				Implicit differentiation	- <u>1</u>
st 3	TT3B				Implicit differentiation	5
te	TTOO					$-\frac{1}{8}$
acking	TT3C				Implicit differentiation	1
	TT2E				Implicit differentiation	
Tr	TT2E				Implicit differentiation	
	1156				M2 COM find AC	10 10 -25 m
C	1a 1b				M2 COM – Illid AO M2 COM – Find angle of AB y Vertical	AG = 25 Cm
	10				M2 COM – mass added AB horizontal	64π
						$\frac{3}{3}kg$
	2a				M2 Kinematics – given force find a	$\mathbf{a} = (3t^2 - 6)i + 4t\mathbf{j}$
0	2b				M2 Kinematics – given force find v	proof
n	3				C4 Integral – Trapezium Rule 4 strips	1.329
S	4a				C4 Integral – Integrate secx exactly	$\ln(2+\sqrt{3})$
0	4b				C4 Integral – Trapezium Rule 6 strips	1.326 (4sf)
l i	4c				C4 Integral – % error	0.687% (using 4.s.f answer)
d a t	5a				C3 Numerical Methods – show root in [2,3]	let $f(x) = x^3 - 14$, show change of sign
	5b				C3 Numerical Methods – rearrange eq	7
i	5c				C3 Numerical Methods $-$ find X_6 to 3s.f.	2.41
o n	5d				C3 Numerical Methods – prove root correct	use upper/lower bound, change in sign method
	6a				C3 Functions – Mod solve	x = 1/7, x = 7/3
	6b				C3 Functions – Mod solve	x = -3, x = 2
	7a				C3 Trig – prove $\sin 3\theta \equiv 3\sin \theta - 4\sin^3 \theta$	Proof
	7b				C3 Trig – use proof to find $\sin 3\theta$	9√3
						$\frac{1}{16}$

	8a (C3 Algebra – make single fraction	Proof
	8b	C3 Algebra – show numerator > 0	Proof
	8c	C3 Algebra – show $f(x) > 0$	Proof
	9a	C3 Diff – show P lies on curve	Proof
	9b	C3 Diff – show dy/dx = $1/\sqrt{2}$ @ P	Proof
	9c	C3 Diff – Find normal equation @ P	$y = -\sqrt{2}x + 2 + \frac{\pi}{4}$
	10a	C4 Binomial – expand $(2-x)/\sqrt{4-2x}$	$1 - \frac{x}{4} - \frac{x^2}{32} - \frac{x^3}{128}$
	10b	C4 Binomial – estimate $1.9 / \sqrt{3.8}$	0.97468
	11a	C4 Integral – Pick your own substitution	$-2\ln 1-\sqrt{x})+2-2\sqrt{x} + c$
	11b	C4 Integral – by parts	$4e^9 - \frac{3}{2}e^4$
	11c	C4 Integral – substitution $x = 2sinu$	$\frac{\pi}{3}$
	11d	C4 Integral – involving ln	$ \begin{array}{c} x^{2}(ln3x)^{2} - x^{2}ln3x \\ + \frac{1}{2}x^{2} + c \end{array} $
	12	Given y is imaginary, find values of x	-4 < x < 0
aballaraa			
chanenge			

ξ β δ ζ μ ρ γ ε η θ к λ φ χ W α ı ν 0 π σ τ υ ω

"I don't believe in mathematics."

Albert Einstein A2 Maths with Mechanics Assignment *o* (omicron) Due in w/b 16/1

Drill

Part A Evaluate, giving exact answers

(a)
$$\int_{0}^{\frac{\pi}{4}} \sin^2 x dx$$
 (b) $\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \cos^2 x dx$ (c) $\int_{-\frac{\pi}{12}}^{\frac{\pi}{12}} (\tan^2 3x + 1) dx$

*note these two lower limits have a negative sign, not very clear in print

Part B Solve the following equations in the range $0 \le x \le 360^{\circ}$ (a) $\cos 2x = 3\sin x + 2$ (b) $\sec^2 2x = 2\tan 2x$ (c) $\csc^2\left(\frac{x}{2}\right) = \sqrt{3}\cot\left(\frac{x}{2}\right) + 1$

Part C Sketch the following functions: show clearly any asymptotes, vertical and horizontal, and any crossings with the coordinate axes.

(a) $y=1-2e^x$ (b) $y=2+\ln(x+1)$ (c) $y=10e^{2x}$

Part D Eliminate *t* from the following pairs of equations:

(a) $x = \tan t$, $y = \frac{1}{\cos t}$ (b) $x = 3\sin t$, $y = \cos t$

Focus from Tracking Test 3

Find the gradient of each for these curves at the points specified:

TT3A) $xy^2 = 20$ at (5, 2) **TT3B**) $x^2 + 3xy + 2y^2 = 15$ at (1, 2) **TT3C**) $(x-1)^2 + (y+2)^2 = 2$ at (2, -3) **TT3D**) sec y = x + y at (1, 0) **TT3E**) $e^x y + x^2 y = 2$ at (0, 2) **TT3F**) $\frac{\sin x}{\sin y} = 2$ at $\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$

Current Work

Figure 1 shows a template *T* made by removing a circular disc, of centre *X* and radius 8 cm, from a uniform circular lamina, of centre *O* and radius 24 cm. The point *X* lies on the diameter *AOB* of the lamina and AX = 16 cm. The centre of mass of *T* is at the point *G*.

- a) Find AG
- b) An axel is inserted through Y such that the axel is perpendicular to AB, and the lamina is left to rotate freely about Y. What is the acute angle between AB and the downward vertical?
- c) With the axel still in place at Y, a mass is attached at the point A such that AB hangs horizontally to the downward vertical. What is the mass required?

Consolidation Mechanics:

2. A particle *P* of mass 0.5 kg is moving under the action of a single force **F** newtons. At time

t seconds, $\mathbf{F} = (1.5t^2 - 3)\mathbf{i} + 2t\mathbf{j}$. When t = 2, the velocity of P is $(-4\mathbf{i} + 5\mathbf{j}) \text{ m s}^{-1}$.

- (*a*) Find the acceleration of *P* at time *t* seconds.
- (b) Show that, when t = 3, the velocity of P is $(9i + 15j) \text{ m s}^{-1}$.

Consolidation Pure

3. Find an approximate value to 3 decimal places for I = $\int_{0}^{\infty} e^{x} \tan x dx$ using four strips.

4. For the integral I =
$$\int_{0}^{\frac{\pi}{3}} \sec x dx$$

a) Find the exact value of I.

- b) Use the trapezium rule to find an approximation of I using six strips to 4s.f.
- c) Find the percentage error of this approximation.

5. (a) Show that $x^3 = 14$ has a root lying between 2 and 3.

(b) Show that $x^3 = 14$ can be rearranged into the form $x = \frac{p}{x^2} + \frac{x}{2}$ where p is a constant to be found.

(c) Using the iteration formula $x_{n+1} = \frac{p}{x_n^2} + \frac{x_n}{2}$, starting with $x_0 = 2.5$, find x_1 , x_2, x_3, x_4, x_5, x_6 .

Using your answer for x_6 , give a root to 3 significant figures of $x^3 = 14$.

- d) Prove that your answer is correct to 3.s.f.
- 6. Solve the following equations:

(a)
$$|5x-4| = |2x+3|$$
 (b) $|x^2+x| = 6$

7. (a)Show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

(b) Given that $\sin \theta = \frac{\sqrt{3}}{4}$, find the exact value of $\sin 3\theta$.

8.
$$f(x) = 1 - \frac{3}{x+2} + \frac{3}{(x+2)^2}, x \neq -2.$$

(a)Show that
$$f(x) = \frac{x^2 + x + 1}{(x+2)^2}, x \neq -2.$$

- (*b*) Show that $x^2 + x + 1 > 0$ for all values of *x*.
- (c) Show that f(x) > 0 for all values of $x, x \neq -2$.
- 9. The curve *C* has equation $x = 2 \sin y$.
 - (a)Show that the point $P\left(\sqrt{2}, \frac{\pi}{4}\right)$ lies on C.

(b)Show that
$$\frac{dy}{dx} = \frac{1}{\sqrt{2}}$$
 at *P*.

(c) Find an equation of the normal to C at P. Give your answer in the form

y = mx + c, where *m* and *c* are exact constants.

10. a) Expand $\frac{2-x}{\sqrt{4-2x}}$ in ascending powers of x up to x³

b) using your expansion, estimate $\frac{1.9}{\sqrt{3.8}}$ correct to 5. d. p.

11. a) using a suitable substitution of your choosing $\int \frac{1}{1-x^{\frac{1}{2}}} dx$ b) using integration by parts, find the exact integral: $\int_{2}^{3} x^{3} e^{x^{2}} dx$ c) using the substitution x = 2sinu, $\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} dx$

Challenge Question

Given that $y = \frac{x}{x + \left(\frac{x}{x+y}\right)}$, find the range of x values if y is not a real number.