A2 Assignment Xi Cover Sheet

Question		Oٍ	¢	宝	Topic	Comment
帚	Aa				C4 Parametrics - Make Cartesian	$y=\frac{2}{x}+4$
	Ab				C4 Parametrics - Make Cartesian	$y=\frac{x^{2}}{9}+1$
	Ac				C4 Parametrics - Make Cartesian	$y=\frac{3}{x}-10$
	Ba				C4 Integral - $\sin ^{\wedge} 2$	$\frac{\pi}{6}-\sqrt{3}+\sqrt{2}$
	Bb				C4 Integral - \ln	$\begin{aligned} & \frac{64}{3} \ln 8 \\ & -\frac{8}{3} \ln 4-\frac{56}{9} \end{aligned}$
	Bc				C4 Integral - e reverse chain	$-\frac{3}{2} e^{25}+\frac{3}{2} e$
	Ca				C3 Functions - sketch \& range involving $\mathrm{e}^{\wedge} \mathrm{x}$	$\begin{aligned} & f(x)>k, f(x) \\ & \in R \end{aligned}$
	Cb				C3 Functions - sketch \& range involving ln	$f(x) \in R$
	Cc				C3 Functions - sketch \& range split function	$\begin{aligned} & g(x) \leq 8, g(x) \\ & \in R \end{aligned}$
	Da				C4 Implicit Diff - find dy/dx	$\frac{d y}{d x}=\frac{-x-y}{x+3 y}$
	Db				$\begin{aligned} & \text { C4 Implicit Diff - find dy/dx } \\ & \qquad \frac{d y}{d x}=\frac{28 x^{6} y^{3}+2 \cos (2 x-y)}{3 e^{3 y}-12 x^{7} y^{2}+\cos (2 x-y)} \end{aligned}$	
	Dc				C4 Implicit Diff - find dy/dx	$\frac{d y}{d x}=-\frac{y}{3 x+4 y}$
c	1a				M2 COM - Particles on light frame	1 g
${ }^{\text {u }}$	1b				M2 COM - Particles on light frame	5 cm
${ }_{\text {r }}^{\text {r }}$	2a				M2 COM - Triangular frame	0.75 cm
nt	2b				M2 COM - Triangular frame	0.5 cm
w	3				M2 COM - Composite lamina	Proof
$\stackrel{0}{\mathrm{o}}$	4				M2 COM - Composite lamina remove shape	6.86 cm
k	5				M2 COM - Ratio mass attached to sector	$3 \pi:(3 \pi-8)$
Consoolldaatioon	6a				M2 Kinematics - vectors given force find \underline{v}	$\begin{gathered} 13 \mathbf{i}+38 \mathbf{j} \\ \mathrm{~ms}^{-1} \end{gathered}$
	6b				M2 Kinematics - vectors given force find v	$13.6 \mathrm{~ms}^{-1}$
	6c				M2 Kinematics - vectors given force find $\underline{\underline{x}}$	$15 \mathbf{i}+28 \mathbf{j}$ m
	6d				M2 Kinematics - vectors given force find x	7.67 m
	7a				M2 Projectiles - show $\tan \alpha=7 / 4$	Proof
	7b				M2 Projectiles - find V	$40.3 \mathrm{~ms}^{-1}$
	7c				M2 Projectiles - find greatest height	62.5 m
	7d				M2 Projectiles - find speed after 7 seconds	$39.1 \mathrm{~ms}^{-1}$
	8				C4 Integral - $\sin 3 \mathrm{x} \ln (\cos 3 \mathrm{x})$	-0.01281
	9a				C4 Integral - Substitution	8/3

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	v	φ	χ	ψ	ω

"Mathematics is not a careful march down a well cleared highway, but a journey into a strange wilderness, where the explorers often get lost."
W. S. Anglin

A2 Maths with Mechanics Assignment ξ (xi) due w/b 9/1
 You are now over halfway through the course only 10 assignments to do after this one! ©

Drill

Part A By making t the subject of one equation and substituting it into the other, eliminate t from the following pairs of equations to obtain the Cartesian equation in x and y in the form $y=f(x)$:
(a) $y=2 t, \quad x=\frac{1}{t-2}$
(b) $y=t^{2}+1, \quad x=3 t$
(c) $y=3 t-1, \quad x=\frac{1}{t+3}$

Part B Evaluate: (give an exact answer)
(a) $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 4 \sin ^{2}\left(\frac{x}{2}\right) d x$
(b) $\int_{2}^{4} x^{2} \ln 2 x d x$
(c) $\int_{1}^{5}-3 x e^{x^{2}} d x$

Part C For each of the following functions, sketch its graph and state its range:
(a) $f: x \rightarrow e^{x}+k, x \in \mathfrak{R} \quad$ (k is a positive constant)
(b) $\mathrm{f}: \mathrm{x} \rightarrow \ln (4-2 \mathrm{x}), \mathrm{x} \in \mathrm{R}, \mathrm{x}<2$
(c) $g(x)=\{3 x-1, x \leq 3$ $\left\{-x^{2}+2, x>3\right.$

Part D Use implicit differentiation to find $\frac{d y}{d x}$ for each of these relations, look out for products and use the product rule!
(a) $x^{2}+2 x y+3 y^{2}=6$
(b) $e^{3 y}-4 y^{3} x^{7}=\sin (2 x-y)+\frac{1}{2}$
(c) $4 y^{3}(x+y)=12$

Current Work : Mechanics

1. $\quad \mathrm{PQRS}$ is a light rectangle with $\mathrm{PQ}=8 \mathrm{~cm}$ and $\mathrm{PS}=6 \mathrm{~cm}$. Particles of mass $2 \mathrm{~g}, 2 \mathrm{~g}$, and 3 g are placed at points P, Q and R respectively.
(a) Find the mass that must be placed at S, for the centre of mass of the entire system to lie 3 cm from the line PQ .
(b) With this mass in place, find the distance of the centre of mass of the system from the line PS.
2. A uniform wire of length 6 m is bent to form a triangle ABC where AB is 1.5 m and BC is $2.5 \mathrm{~m} . *$ HINT - think about what type of triangle this is !!! *

Calculate the distance of the centre of mass of the triangle from (a) AB and (b) AC

The figure shows a uniform lamina $A B C D E$ such that $A B D E$ is a rectangle, $B C=C D$, $A B=8 a$ and $A E=6 a$. The point X is the mid-point of $B D$ and $X C=4 a$. The centre of mass of the lamina is at G.

Show that $G X=\frac{44 a}{15}$
4.

> A uniform lamina L is formed by taking a uniform square sheet of material $A B C D$ of side 10 cm and removing a semicircle with diameter $A B$ from the square, as shown in the figure.

Find in cm to 2.d.p the distance of the centre of mass of the lamina from the mid-point of $A B$.
5. A semicircular lamina has mass M . A is the midpoint of the diameter and B is the point on the circumference at the other end of the axis of symmetry. A particle of mass m is attached to the lamina at B. the centre of mass of the loaded lamina is at the midpoint of AB. Find, in terms of π, the ratio M:m.

Consolidation : Mechanics

6. A force $\mathbf{F}=(2 \mathrm{t}-1) \mathbf{i}+2 \mathrm{t}^{2} \mathbf{j}$ acts on a mass of 0.5 kg . Initially, the mass has a velocity of $\mathbf{i}+2 \mathbf{j}$ ms^{-1} and has position vector $3 \mathbf{i}-5 \mathbf{j} \mathrm{~m}$ relative to the origin.
(a) Find the velocity of the mass at $t=3$ seconds.
(b) Find the speed of the mass at $t=2$ seconds.
(c) Find the position of the mass at $t=3$ seconds.
(d) Find the distance of the mass from the origin at $t=2$ seconds.
7. A particle P is projected from a point O on horizontal ground with speed V metres per second and angle of elevation α. The particle moves freely under gravity. After 5 seconds the components of the velocity of P are $20 \mathrm{~ms}^{-1}$ horizontally, and $14 \mathrm{~ms}^{-1}$ vertically downwards.
a) Show that $\tan \alpha=7 / 4$
b) Calculate, to one decimal place, the value of V
c) Find the greatest height above the ground reached by P
d) Calculate the speed of P , to one decimal place, 7 seconds after leaving O .

Consolidation : Pure

8. Evaluate to 5 d.p:

$$
\int_{\frac{\pi}{18}}^{\frac{\pi}{12}} \sin 3 x \ln (\cos 3 x) d x
$$

9. Integration by Substitution:
a) Using $t^{2}=x+1$, find $\int_{0}^{3} \frac{x}{\sqrt{x+1}} d x$
b) Using $u=1+2 x$, find $\int \frac{4 x}{(1+2 x)^{2}} d x$
10. Two functions f and g are defined by $f: x \mapsto \frac{25}{3 x-2}, x \in \mathbb{R},: 1<x \leq 9$
and $g: x \mapsto x^{2}, x \in \mathbb{R},: 1<x \leq 3$. Find
(a) the range of f (using a sketch to illustrate your answer)
(b) the inverse function f^{-1}, stating its domain
(c) the composite function $f g$, stating its domain
(d) the solutions to the equation $f g(x)=\frac{2}{x-1}$

Preparation

Read about Vectors in particular the equation of a line and the intersection of two lines

