A2 Assignment Nu Cover Sheet

Name:

Q	Question		BP	Ready	Topic	Comment				
	Aa				C4 Integration – Repeated linear factors	$-\frac{3}{(x-2)} - \frac{3}{(x-2)^2} + c$				
	Ab				C4 Integration – cos^2 conversion	x + sinx + c				
	Ac				C4 Integration – sin^2 conversion	$x + \sin x + c$ $\frac{3}{2}x - \frac{3}{16}\sin 8x + c$				
	Ba				C4 Integration – R method x solve	1.17°, 3.26°				
	Bb				C4 Integration – R method 2x solve	1.13°, 3.18°, 4.28°, 0.04				
	Bc				C4 Integration – R method x/2 solve	0°, π°				
Drill	Ca				C3 Num Meth – confirm root in interval	Use a change of sign argument. Remember to say that $f(x)$ is continuous on the interval!				
	Cb				C3 Num Meth – confirm root in interval	Use a change of sign argument. Remember to say that $f(x)$ is continuous on the interval!				
	Сс				C3 Num Meth – confirm root in interval	Use a change of sign argument. Remember to say that $f(x)$ is continuous on the interval!				
	Da				C3 MOD – sketch & define range	$f(x) \ge 0$				
	Db				C3 MOD – sketch & define range	$f(x) \ge -2$				
	Dc				C3 MOD – sketch & define range	$f(x) \neq 2$				
	1a				C4 Integration – sin(3x+1)	$\frac{1}{3}\cos(3x+1)+c$				
	1b				C4 Integration $-\cos(x/2)$	$\frac{\frac{1}{3}\cos(3x+1)+c}{8\sin\left(\frac{x}{2}\right)+c}$				
	1c				C4 Integration – tanx	$-\ln(\cos x) + c$				
	1d				C4 Integration – cot4x	$\frac{1}{4}\ln(\sin 4x) + c$				
	1e				C4 Integration – trig reverse chain	$\frac{\frac{1}{4}\ln(\sin 4x) + c}{\frac{1}{10}\sec^5 2x + c}$				
work	1f				C4 Integration – tan5x	$-\frac{1}{5}\ln(\cos 5x) + c$				
Current w	1g				C4 Integration – sin^2 conversion	$\frac{1}{2}x - \frac{1}{24}\sin 12x + c$				
Cn	1h				C4 Integration – cos^2 conversion	$\frac{3}{2}x + \frac{3}{8}\sin 4x + c$				
	1i				C4 Integration – tan^2 conversion	$\frac{3}{4}\tan 4x - 3x + c$				
	1j				C4 Integration – trig reverse chain	$\frac{1}{6}\tan^6 y + c$				
	1k				C4 Integration – cosec3u cot3u	$-\frac{1}{3}cosec3u + c$				
	11				C4 Integration – reverse chain	$\frac{2}{21}(3x^2+1)^7+c$				

	1m	C4 Integration – trig fraction	$\frac{1}{\ln(2+\tan 2x)+a}$				
	1	CA Internation and of freedom.	$\frac{1}{3}\ln(2 + \tan 3x) + c$ $\ln x-3 - 2\ln x-2 + c$				
	1n	C4 Integration – partial fractions					
	2	C4 Integration – definite case 3 partial	Proof				
	2	fract	D C				
	3a	C3 Trig Proof	Proof				
	3b	Hence C4 Integral	$\frac{\pi}{3} + \frac{1}{4}$				
	4a	C3 Trig Proof	Proof				
	4b	Hence C4 Integral	0				
	5	C4 Integral – definite trig	$\sqrt{3}$ 1				
			$\frac{\sqrt{3}}{4} + \frac{1}{3}$				
	6a	C4 integral – definite sin^2 conversion	1				
			$\frac{\pi}{2}$ -1				
	6b	C4 Integral – definite cos^2 conversion	2 0/2				
	OU	C4 integral – definite cos 2 conversion	$\frac{3\pi}{2} + \frac{9\sqrt{3}}{4}$ $\sqrt{2} + \left(\frac{3\sqrt{2}x}{4}\right) + \left(\frac{27\sqrt{2}x^2}{32}\right)$				
	7a	C4 Binomial – expand 2/root(2-3x)	$(2\sqrt{2}v)$ $(27\sqrt{2}v^2)$				
	7 a	C4 Binoimai – expand 2/100t(2-3x)	$\sqrt{2} + \left(\frac{3\sqrt{2}x}{2}\right) + \left(\frac{27\sqrt{2}x^2}{2}\right)$				
			(4)(32)				
			$+\left(\frac{135\sqrt{2}x^3}{128}\right)$				
			128				
			+				
	7b	C4 Binomial – state validity	Valid x < 2/3				
	7c	C4 Binomial – estimate 2/root170	0.1534				
	8a	M2 Kinematics – find velocity given	56ms ⁻¹				
		displace					
	8b	M2 Kinematics –find acc given	28 ms ⁻²				
		displacement					
	9a	M2 Kinematics – find position given	29m				
		velocity					
	9b	M2 Kinematics – find accel given velocity	-6 ms ⁻²				
ion	9c	M2 Kinematics – find max velocity	13.5 ms ⁻¹				
dati	9d	M2 Kinematics – find distance @ max	15.5 m				
olio		velocity					
Consolidatior	10a	M2 Kinematics – acc vector find velocity	0.5 i – 2 j ms ⁻¹				
Ú	10b	M2 Kinematics – acc vector find speed	1.3 ms ⁻¹				
	10c	M2 Kinematics – find position given acc	i – 0.4j m				
		vect					
	10d	M2 Kinematics – find displace @ t = 4	2.56m				
	11a	M2 Projectiles – find speed & direction	13 m s ⁻¹ , 39° above horizontal				
	11b	M2 Projectiles – find speed & direction	11 m s ⁻¹ , 7.7° below horizontal				
	12a	C3 Identities – which is true?	D				
	12b	C3 Identities – which is true?	A				
ra	TT3Ai	R, α transformations	R=25				
Extra	TT3Aii	R, α transformations	-25				
	TT3Aiii	R , α transformations	1.85				

TT3Aiv	R, α transformations	3.84, 6.16				
TT3B	Implicit differentiation	9y + 7x = 23				

α	β	γ	δ	\mathcal{E}	ζ	η	θ	ı	К	λ	μ	ν	ξ	0	π	ρ	σ	τ	υ	φ	χ	Ψ	ω	
---	---	---	---	---------------	---	---	----------	---	---	---	---	---	---	---	-------	---	----------	---	---	---	---	---	---	--

"One of the most endearing things about mathematicians is the extent to which they will go to avoid doing any work."

M Pardage

A2 Maths with Mechanics Assignment V (nu) Due in w/b 08/01/18

Drill

Part A Integrate the following functions

a)
$$\int \frac{3x}{(x-2)^3} dx$$

(b)
$$\int 2\cos^2\frac{x}{2}dx$$

(c) $\int 3\sin^2 4x \, dx$

Part B Write in form indicated and hence solve for x (in radians to 2dp) in the interval $[0, 2\pi]$:

(a)
$$4\sin x - 3\cos x = 2.5$$
 (b) $5\cos 2x + 12\sin 2x = 6$ (c) $\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right) = 1$

$$R\cos(2x - \alpha) \qquad R\cos\left(\frac{x}{2} - \alpha\right)$$

Part C By first defining f(x) show that each of the following functions has a root on the interval given:

(a)
$$x^3 + 6x^2 = 9x - 2$$
 on (0, 0.5) (b) $1 + x^2 = x^3$ on (1, 2) (c) $x^2 = \sin x$ on (0.5, 1)

Part D For each of the following functions, with domain $x \in R$, sketch its graph and state its range: mark any asymptotes

(a)
$$f(x) = |3x - 2|$$
 (b) $f(x) = |x| - 2$ (c) $f(x) = 2 + \frac{3}{x}$

Learning formulae * you will need these in C4 integration Complete the following:

sin(A+B) ≡
sin(A−B) ≡
cos (A+B) ≡
cos (A−B) ≡
tan(A+B) ≡
tan(A−B) ≡
sin2A ≡
cos2A ≡

^{*}factor formulae express as sum or difference of sines and cosines

Complete the table: you will feel more confident about integration if you learn these

f(x)	∫f(x)	f(x)	∫f(x)
x ⁿ		cosecx	
e ^x		secx	
1/x		cotx	
sinx		sec² x	
cosx		-cosecxcotx	
tanx		secxtanx	
		-cosec²x	

1. Integrate the following functions using an appropriate method when required

(a)
$$\int -\sin(3x+1) dx$$
 (b) $\int 4\cos(\frac{x}{2}) dx$ (c) $\int \tan x dx$

(d)
$$\int \cot 4x \, dx$$
 (e) $\int \sec^5 2x \, tan 2x \, dx$ (f) $\int \tan 5x \, dx$

(g)
$$\int \sin^2 6x \, dx$$
 (h) $\int 3\cos^2 2x \, dx$ (i) $\int 3\tan^2 4x \, dx$

(j)
$$\int \sec^2 y \tan^5 y \ dy$$
 (k) $\int \csc 3u \cot 3u \ du$ (l) $\int 4x(3x^2 + 1)^6 \ dt$

(I)
$$\int 4x(3x^2+1)^6 dt$$

(m)
$$\int \frac{\sec^2 3x}{2 + \tan 3x} \, dy$$

(m)
$$\int \frac{\sec^2 3x}{2+tan3x} dy$$
 (n) $\int \frac{4-x}{(x-2)(x-3)} dx$

2. Show that
$$\int_{0}^{2} \frac{x^2 + 6x + 7}{(x+2)(x+3)} dx = 2 + \ln\left(\frac{25}{18}\right)$$

For the following definite integrations with limits give an exact answer in terms of π .

3. a) Show that $\sin^2 x + 3\cos^2 x \equiv 2 + \cos 2x$.

b) Hence evaluate * check using your calculator to see if you're right !!! *

$$\int_{\pi/12}^{\pi/4} (\sin^2 x + 3\cos^2 x) dx$$

- 4. a) Show that $\frac{4\cos 2x}{\sin^2 2x} \equiv \cos ec^2 x \sec^2 x$.
 - b) Hence evaluate $\int_{\pi/6}^{\pi/3} \frac{4\cos 2x}{\sin^2 2x} dx$ * check using your calculator to see if you're right !!! *
- 5. Evaluate $\int_{0}^{\infty} (\sin 3x + \cos 2x) dx$ * check using your calculator to see if you're right !!! *
- Evaluate and check using your calculator to see if you're right !!!

(a)
$$\int_{0}^{\pi} \sin^2 \frac{1}{4} x dx$$

(a)
$$\int_{0}^{\pi} \sin^2 \frac{1}{4} x dx$$
 (b) $\int_{0}^{\pi} 3 \cos^2 \left(\frac{x}{6}\right) dx$

- 7. a) Expand, in ascending powers of x up to x^3 , $\frac{2}{\sqrt{2-3x}}$
- b) State the validity of your expansion
- c) Use your expansion to estimate $\frac{2}{\sqrt{170}}$ correct to 4.d.p (check this on your calculator !!)

Mechanics

Use differentiation and integration for questions where the acceleration is not constant

- 8 A particle P moves in a straight line such that at time t its displacement from a fixed point O is given by $x = 4t^3 + 2t^2$.
 - (a) Find the velocity when t = 2
 - (b) Find the acceleration when t = 1
- 9 A particle P is moving along the x-axis with velocity $v = (18t - 6t^2) \text{ ms}^{-1}$. When t = 0, P is at x = 2m.
 - (a) Find the position of P when t = 3.
 - (b) Find the acceleration when t = 2.
 - (c) Find the maximum velocity.
 - (d) Find the distance OP when the velocity is a maximum.
- Given that the acceleration vector of an object is $\mathbf{a} = -0.2 \mathbf{j} \text{ ms}^{-2}$, with initial velocity 0.5 i ms⁻¹, 10 and that the object starts at the origin, find:
 - (a) The velocity at time t = 10

- (b) The speed when t = 6
- (c) The position vector at t = 2
- (d) The displacement from the origin at t = 4
- 11 A particle is projected with a speed of 21 m s⁻¹ at an angle of elevation 60°. Find its
 - i) speed
 - ii) and direction of motion after
 - a) 1 second
- b) 2 seconds
- 12. For these questions decide which of the responses given is (are) correct then choose
- A if 1, 2 and 3 are correct
- B if only 1 and 2 are correct
- C if only 2 and 3 are correct
- D if only 1 is correct
- E if only 3 is correct

$$x = 1 + \cos^2 \theta - \cos^4 \theta$$

$$y = 1 + \sin^2 \theta - \sin^4 \theta$$

$$1.x - y = 0$$

$$2.x + y = 2\cos^2\theta\sin^2\theta$$

$$3.x = 1 + \frac{1}{2}\sin^2 2\theta$$

$$f(x) = e^{\sin x}$$

$$1.f(0)=1$$

$$2.f'(0)=1$$

$$3.f''(0)=1$$

Optional extra questions for you if you are catching up on work from the C3 mock exam

$$\mathbf{A} \qquad \mathbf{f}(x) \equiv 7\cos x - 24\sin x$$

Given that
$$f(x) = R\cos(x+\alpha)$$
, where $R \ge 0, 0 \le \alpha \le \frac{\pi}{2}$, and x and α are measured in radians,

- i) find R and show that $\alpha = 1.29$ to 2 decimal places.
- Hence write down
- ii) the minimum value of f(x),
- iii) the value of x in the interval $0 \le x \le 2\pi$ which gives this minimum value.
- iv) Find the smallest two positive values of x for which $7\cos x 24\sin x = 10$
- **B** Find the equation of the tangent to the curve with implicit equation $x^2 + 3xy^2 y^3 = 9$ at the point (2, 1).