Question		¢	$\hat{\sim}$	完	Topic	Comment
$\vec{\nabla}$	Aa				C4 Integration	$\frac{1}{4} \sin 2 x+\frac{1}{2} x+c$
	Ab				C4 Integration	$\frac{1}{3} e^{3 x-2}+c$
	Ac				C4 Integration	$\frac{1}{2} \ln \|2 x-5\|+c$
	Ba				C3 Show root	change of sign
	Bb				C3 Show root	change of sign
	Bc				C3 Show root	$f(x)$ is not continuous on the interval, and $f(0)$ and $f(2)$ will both be positive i.e. there will be no change in sign. Have a look at it in your graphics or on Autograph
	Ca				C3 Log equations	4, 12
	Cb				C3 Log equations	$\frac{1}{e-1}$
	Da				C4 Implicit Differentiation	$\frac{d y}{d x}=\frac{2 x+3 y}{2 y-3 x}$
	Db				C4 Implicit Differentiation	$\frac{d y}{d x}=\frac{4 x-y}{x-3 y}$
	Dc				C4 Implicit Differentiation	$\frac{d y}{d x}=\frac{2}{3} \tan 2 x \cot 3 y$
	Dd				C4 Implicit Differentiation	$\frac{d y}{d x}=\frac{e^{y}}{1-x e^{y}}$
	De				C4 Implicit Differentiation	$\frac{d y}{d x}=-\frac{y \ln y}{2 y^{2}+x}$
	Df				C4 Implicit Differentiation	$\frac{d y}{d x}=\frac{\sin y+2 x \cos y}{x^{2} \sin y-x \cos y}$
$\begin{aligned} & \text { y } \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & U \\ & 0 \end{aligned}$	1a				C4 Trig integration	$\tan x-x+c$
	1b				C4 Trig integration	$-\frac{1}{3} \cot 3 x-x+c$
	1c				C4 Trig integration	$\frac{1}{2} x-\frac{1}{4} \sin 2 x+c$
	1d				C4 Trig integration	$-\frac{1}{2} \operatorname{cosec} 2 x+c$
	1 e				C4 Trig integration	$3 x+4 \cos x-\sin 2 x+c$
	1f				C4 Trig integration	$-\frac{1}{8} \cos 4 x-\frac{1}{4} \cos 2 x+c$
	2				C3 natural log knowledge	Think about what values x can take in for $\ln \mathrm{x}$ to exist, and what the modulus does
	3a				C4 Integration using partial fractions	$\frac{1}{4} \ln \left\|\frac{x-2}{x+2}\right\|+c$
	3b				C4 Integration using partial fractions	$\ln \|x-3\|-2 \ln \|x-2\|+c$
	3c				C4 Integration using partial fractions	$\ln \|x-1\|-2 \ln \|2 x+1\|+c$
	4a				C4 Trapezium rule	3.983 (3dp)
	4b				C4 Integration	4.047 (3dp)
	4c				C4 Percentage error	1.58\%

α	β	γ	δ	ε	ζ	η	θ	\ddots	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ

"The mathematician is fascinated with the marvellous beauty of the forms he constructs, and in their beauty he finds everlasting truth"

J B Shaw

A2 Maths with Mechanics Assignment μ (mu) INCLUDING a past paper: C3 past Jan 2009 due in w/b 01/01/18

Happy Christmas

And a successful New Year!

Drill

Part A: Integrate with respect to x (use the correct notation $\int(.) \mathrm{dx}=$. etc)
(a) $\cos ^{2} x$ (hint write in terms of $\cos 2 x$ first)
(b) $\mathrm{e}^{3 x-2}$
(c) $\frac{1}{2 x-5}$

Part B: Show that each of the following functions has a root on the interval given:
(a) $x^{3}-x+3=0$
$(-3,3)$
(b) $3+4 x-x^{4}=0$
(c) Explain why we cannot use a change of sign to show there is a root in the following equation:
$\tan 2 x+1=0$ on the interval $\left(0^{c}, 2^{c}\right)$.
You may want to look at the graph to answer this.
Part C:Solve the following equations give an exact answer
(a) $2 \ln 2 x-6 \ln 2=\ln (x-3)$
(b) $\ln (x+1)-\ln x=1$

Part D: Find $\frac{d y}{d x}$ in terms of x and y.
(a) $x^{2}+3 x y-y^{2}=0$
(b) $4 x^{2}-2 x y+3 y^{2}=8$
(c) $\cos 2 x \sec 3 y+1=0$
(d) $x e^{y}-y=5$
(e) $y^{2}+x \ln y=3$
(f) $x \sin y=1-x^{2} \cos y$

1. Integrate the following functions with respect to x :
(a) $\int \tan ^{2} x d x$
(hint write in terms of $\sec ^{2} x$)
(d) $\int \frac{\cos 2 x}{\sin ^{2} 2 x} d x$
(b) $\int \cot ^{2} 3 x d x$
(e) $\int(1-2 \sin x)^{2} d x$
(c) $\int \sin ^{2} x d x$
(f) $\int \sin 3 x \cos x d x$
2. Question: Why do we put modulus signs around \ln when integrating?
3. Integrate the following functions using partial fractions:
(a) $\int \frac{1}{x^{2}-4} d x$
(b) $\int \frac{4-x}{(x-2)(x-3)} d x$
(c) $\int \frac{5-2 x}{(x-1)(2 x+1)} d x$
4. The area under the curve $y=\ln x$, is bounded by the x-axis and the line $x=5$.
(a) Estimate the area of the shaded region to 3 decimal places using the trapezium rule with 4 strips.
(b) Given that $\int \ln x d x=x \ln x-x+c$, find the true value of the area correct to 3 decimal places. (extension - find out why this is the integra!!)
(c) Calculate the percentage error of the trapezium rule approximation.
5. A particle is projected from a height of 30 m above the ground, with initial velocity $3 \underline{i}+4 \mathrm{j}$. Find the time it takes for the particle to be travelling perpendicular to its original projection
6. A particle is projected horizontally with speed $40 \mathrm{~m} / \mathrm{s}$ from a point A. It hits the ground 100 m horizontally from A. Find the height of A
7. A field 100 m in length has two barriers of height 2 m at a distance of 5 m from both ends. A ball is kicked with speed $25 \mathrm{~m} / \mathrm{s}$. What is the minimum angle the ball would need to be kicked at to the horizontal to clear both walls.
8. (a) Prove the following identity: set out proof correctly
$\sec ^{2} x-\operatorname{cosec}^{2} x \equiv \tan ^{2} x-\cot ^{2} x$
(b) Solve the following equation on the interval $0 \leq \theta \leq 2 \pi$. Give answers to 3sf.

$$
\cos 2 \theta=\tan 2 \theta
$$

9. The first three terms in the expansion of $(1+a x)^{b}$, in ascending powers of x, for $|a x|<1$, are

$$
1-6 x+24 x^{2}
$$

(a) Find the values of the constants a and b.
(b) Find the coefficient of x^{3} in the expansion.
10. A curve has the equation $x^{2}+4 x y-3 y^{2}=36$.
(a) Find an equation for the tangent to the curve at the point $\mathrm{P}(4,2)$.

Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P ,
(b) find the coordinates of Q .
11. (a) Sketch the graph of $y=|2 x+a|, a>0$, showing the coordinates of the points where the graph meets the coordinate axes.
(b) On the same axes, sketch the graph of $y=\frac{1}{x}$.
(c) Explain how your graphs show that there is only one solution of the equation

$$
x|2 x+a|-1=0
$$

(d) Find, using algebra, the value of x for which $x|2 x+1|-1=0$.
12. The functions f and g are defined by

$$
f: x \rightarrow 5 x+2, x \in \mathbb{R} \quad g: x \rightarrow \frac{1}{x}, x \in \mathbb{R}, x \neq 0
$$

(a) Find the following functions stating the domain in each case.
(i) $\mathrm{f}^{-1}(\mathrm{x})$
(ii) $\quad \mathrm{fg}(\mathrm{x})$
(iii) $(\mathrm{fg})^{-1}(\mathrm{x})$
(b) Solve the equation $\mathrm{f}^{-1}(x)=\mathrm{fg}(x)$, giving your answers to 2 decimal places.

Challenge - have a go at this!

A cube ABCDEFGH has the square $A B C D$ as its base with $E F G H$ above $A B C D$ respectively. What is the cosine of the angle CAG?

Optional extra questions for you if you are catching up on work from the C3 mock exam

MEA) Using $\cos 2 A \equiv 2 \cos ^{2} A-1 \equiv 1-2 \sin ^{2} A$, show that:
(i) $\cos ^{2} \frac{x}{2} \equiv \frac{1+\cos x}{2}$
(ii) $\sin ^{2} \frac{x}{2} \equiv \frac{1-\cos x}{2}$

MEB) Given that $\cos \theta=0.6$ and that θ is acute, write down the values of:
(i) $\cos \frac{\theta}{2}$
(ii) $\sin \frac{\theta}{2}$
(iii) $\tan \frac{\theta}{2}$

MEC) Show that $\cos ^{4} \frac{A}{2} \equiv \frac{1}{8}(3+4 \cos A+\cos 2 A)$

Past paper work

Do C3 January 2009 available on the VLE then mark it using the mark scheme only after you have completed it in timed conditions. You may want to try doing in reverse order. Don't forget to redo the C3 paper in the mock exam if you did not achieve your AS grade

