Q	uestion	Done	BP	Ready	Торіс	Comment							
	Aa				C4 Integration	$\frac{1}{4}\sin 2x + \frac{1}{2}x + c$							
	Ab				C4 Integration	$\frac{1}{3}e^{3x-2}+c$							
	Ac				C4 Integration	$\frac{1}{2}\ln 2x-5 +c$							
	Ba				C3 Show root	change of sign							
	Bb				C3 Show root	change of sign							
Drill	Bc				C3 Show root	f(x) is not continuous on the interval, and $f(0)$ and $f(2)$ will both be positive i.e. there will be no change in sign. Have a look at it in your graphics or on Autograph							
	Ca				C3 Log equations	4,12							
D	Cb				C3 Log equations	$\frac{1}{e-1}$							
	Da				C4 Implicit Differentiation	$\frac{dy}{dx} = \frac{2x + 3y}{2y - 3x}$							
	Db				C4 Implicit Differentiation	$\frac{dy}{dx} = \frac{2x + 3y}{2y - 3x}$ $\frac{dy}{dx} = \frac{4x - y}{x - 3y}$							
	Dc				C4 Implicit Differentiation	$\frac{dy}{dx} = \frac{2}{3} \tan 2x \cot 3y$							
	Dd				C4 Implicit Differentiation	$\frac{dy}{dx} = \frac{e^y}{1 - xe^y}$							
	De				C4 Implicit Differentiation	$\frac{dy}{dx} = -\frac{y\ln y}{2y^2 + x}$							
	Df				C4 Implicit Differentiation	$\frac{dy}{dx} = \frac{\sin y + 2x \cos y}{x^2 \sin y - x \cos y}$							
	MEAi				Trig	$\cos x \equiv 2\cos^2 \frac{x}{2} - 1$							
	MEAii				Trig	$\Rightarrow 2\cos^2 \frac{x}{2} \equiv 1 + \cos x \Rightarrow \cos^2 \frac{x}{2} \equiv \frac{1 + \cos x}{2}$							
Mock Exam						$\cos x \equiv 1 - 2\sin^2 \frac{x}{2}$ $\Rightarrow 2\sin^2 \frac{x}{2} \equiv 1 - \cos x \Rightarrow \sin^2 \frac{x}{2} \equiv \frac{1 - \cos x}{2}$							
Mo	MEBi				Trig	$\frac{2\sqrt{5}}{5}$ $\frac{\sqrt{5}}{5}$							
	MEBii				Trig	$\frac{5}{\sqrt{5}}$							
	MED					3							
	MEBiii				Trig	$\frac{1}{2}$							

	MEC	Trig	$(1 + \cos A)^2 = 1 + 2\cos A + \cos^2 A$						
			$\cos^4 \frac{A}{2} \equiv \left(\frac{1+\cos A}{2}\right)^2 \equiv \frac{1+2\cos A + \cos^2 A}{4}$						
			- (-) .						
			$\equiv \frac{1+2\cos A + \left(\frac{1+\cos 2A}{2}\right)}{4}$						
			≡						
			7						
			$\equiv \frac{2+4\cos A+1+\cos 2A}{8}$						
			8						
			$\equiv \frac{3+4\cos A + \cos 2A}{8}$						
			≡ <u>8</u>						
	1a	C4 Trig integration	$\tan x - x + c$						
	1b	C4 Trig integration	1						
			$-\frac{1}{3}\cot 3x - x + c$						
	1c	C4 Trig integration	1 1						
			$\frac{1}{2}x - \frac{1}{8}sin4x + c$						
	1d	C4 Trig integration	1						
			$-\frac{1}{2}\cos(2x+c)$						
	1e 1f	C4 Trig integration	$3x - 4\cos x - \sin 2x + c$						
	1f	C4 Trig integration	$\frac{1}{2}x - \frac{1}{8}\sin 4x + c$ $-\frac{1}{2}\csc 2x + c$ $3x - 4\cos x - \sin 2x + c$ $-\frac{1}{8}\cos 4x - \frac{1}{4}\cos 2x + c$ Think about what values x can take in						
	2	C3 natural log knowledge	Think about what values x can take in						
			for ln x to exist, and what the modulus						
	3a	C4 Integration using partial fractions	does						
	38	C4 Integration using partial fractions	$\left \frac{1}{4} \ln \left \frac{x-2}{x+2} \right + c \right $						
~			4 x+2						
vor	3b	C4 Integration using partial fractions	$2 \ln r - 2 - 2 \ln r - 3 - \frac{1}{1 + c}$						
at v			$2 \operatorname{m} x - 3$						
Current work	3c	C4 Integration using partial fractions	$\frac{2\ln x-2 - 2\ln x-3 - \frac{1}{x-3} + c}{-x + \ln x-1 - \frac{3}{2}\ln 2x+1 + c}$						
Cu	4a	C4 Tranazium rula	$\frac{1}{2}$ 0.82 (2dp)						
	4a 4b	C4 Trapezium rule C4 Integration	3.983 (3dp) 4.047 (3dp)						
	40 4c	C4 Percentage error	1.58%						
	5	M2 Projectiles – perpendicular to	t = 0.638						
	5	original	1 - 0.058						
	6	M2 Projectiles – horizontal, find	31m						
	0	height	5 mil						
	7	M2 Projectiles – find needed angle of	24 degrees						
		projection	C						
	8a	C3 Trig proof	Proof						
	8b	C3 Trig solve	0.333 ^c ,1.24 ^c , 3.47 ^c , 4.38 ^c						
	9a	C3 Binomial expansion –compare	a = 2, b = -3						
	<i>7a</i>	coefficients	u - 2, v - 3						
	9b	C3 Binomial expansion – find	-80						
		coefficient							
	10a	C4 Implicit Differentiation &	y = 18 - 4x						
Consolidation	104	coordinate geom.							
	10b	C4 Coordinate geom.	Q (-4, -2)						
	11a	C3 Modulus Sketching	Sketch						
	11b	C3 Graph Sketching	Sketch						
bild	11c	C3 Solutions vs sketch	one point of intersection						
onsc	11d	C3 Modulus solve	1/2						
Co	12ai	C3 Inverse functions	$f^{-1}: x \to \frac{x-2}{5}, x \in \mathbb{R}$						
			$J \xrightarrow{-:} x \rightarrow \underline{-5}, x \in \mathbb{K}$						
	12aii	C3 Composite functions	$fg: x \to \frac{5}{x} + 2, x \in \mathbb{R}, x \neq 0$						
1			$\begin{array}{c} y \cdot x \gamma = \pm 2, x \in \mathbb{N}, x \neq 0 \\ x \end{array}$						

	12aii	C3 Inverse and composite functions	$(fg)^{-1}: x \to \frac{5}{x-2}, x \in \mathbb{R}, x \neq 2$
	12b	C3 function solve	x = -1.81, 13.81
	13	Challenge	$\sqrt{6/3}$
С			

α	β	γ	δ	ε	ζ	η	θ	l	к	λ	μ	v	ξ	0	π	ρ	σ	τ	υ	φ	χ	ψ	ω
			1 1	1 1					1 1										1		1 1		1

"The mathematician is fascinated with the marvellous beauty of the forms he constructs, and in their beauty he finds everlasting truth"

J B Shaw

A2 Maths with Mechanics Assignment λ (lambda) due in w/b 5/12

Drill

Part A: Integrate with respect to x (use the correct notation $\int (...) dx = etc$) (b) e^{3x-2} (c) $\frac{1}{2x-5}$ (a) $\cos^2 x$ (*hint write in terms of \cos 2x first*)

Part B: Show that each of the following functions has a root on the interval given: (a) $x^3 - x + 3 = 0$ (-3, 3) (b) $3 + 4x - x^4 = 0$ (1, 2)

(c) Explain why we cannot use a change of sign to show there is a root in the following equation:

 $\tan 2x+1=0$ on the interval $(0^{c}, 2^{c})$. You may want to look at the graph to answer this.

Part C: Solve the following equations give an exact answer

(a) $2\ln 2x - 6\ln 2 = \ln(x-3)$ (b) $\ln(x+1) - \ln x = 1$

Part D: Find $\frac{dy}{dx}$ in terms of x and y.

(a) $x^2 + 3xy - y^2 = 0$ (b) $4x^2 - 2xy + 3y^2 = 8$ (c) $\cos 2x \sec 3y + 1 = 0$

(d)
$$xe^y - y = 5$$
 (e) $y^2 + xlny = 3$ (f) $x \sin y = 1 - x^2 \cos y$

Focus from C3 Mock Exam

MEA) Using
$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$
, show that:
(i) $\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$ (ii) $\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$

MEB) Given that $\cos \theta = 0.6$ and that θ is acute, write down the values of:

(i)
$$\cos\frac{\theta}{2}$$
 (ii) $\sin\frac{\theta}{2}$ (iii) $\tan\frac{\theta}{2}$

MEC) Show that $\cos^4 \frac{A}{2} = \frac{1}{8} (3 + 4\cos A + \cos 2A)$

Current work 1: C4 Integration

- 1. Integrate the following functions with respect to *x*:
 - (d) $\int \frac{\cos 2x}{\sin^2 2x} dx$ (a) $\int \tan^2 x dx$ (hint write in terms of $\sec^2 x$) (b) $\int \cot^2 3x \, dx$ (c) $\int \sin^2 x dx$
 - (e) $\int (1-2\sin x)^2 dx$
 - (f) $\int \sin 3x \cos x \, dx$
- 2. Question: Why do we put modulus signs around ln when integrating?

3. Integrate the following functions using partial fractions:

(a)
$$\int \frac{1}{x^2 - 4} dx$$
 (b) $\int \frac{4 - x}{(x - 2)(x - 3)} dx$ (c) $\int \frac{5 - 2x}{(x - 1)(2x + 1)} dx$

4. The area under the curve $y = \ln x$, is bounded by the *x* – axis and the line *x* = 5.

(a) Estimate the area of the shaded region to 3 decimal places using the trapezium rule with 4 strips.

(b) Given that $\int \ln x \, dx = x \ln x - x + c$, find the true value of the area correct to 3 decimal places. (extension – find out why this is the integral!)

(c) Calculate the percentage error of the trapezium rule approximation.

Current work M2:

5. A particle is projected from a height of 30m above the ground, with initial velocity 3i + 4j. Find the time it takes for the particle to be travelling perpendicular to its original projection

6. A particle is projected horizontally with speed 40m/s from a point A. It hits the ground 100m horizontally from A. Find the height of A

7. A field 100m in length has two barriers of height 2m at a distance of 5m from both ends. A ball is kicked with speed 25m/s. What is the minimum angle the ball would need to be kicked at to the horizontal to clear both walls.

Consolidation

8. (a) Prove the following identity: set out proof correctly $\sec^2 x - \csc^2 x \equiv \tan^2 x - \cot^2 x$

- (b) Solve the following equation on the interval $0 \le \theta \le 2\pi$. Give answers to 3sf. $\cos 2\theta = \tan 2\theta$
- 9. The first three terms in the expansion of $(1 + ax)^b$, in ascending powers of *x*, for |ax| < 1, are $1 - 6x + 24x^2$.

(a) Find the values of the constants *a* and *b*.

(b) Find the coefficient of x^3 in the expansion.

10. A curve has the equation $x^2 + 4xy - 3y^2 = 36$.

(a) Find an equation for the tangent to the curve at the point P(4, 2).

Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P,

- (b) find the coordinates of Q.
- 11. (a) Sketch the graph of y = |2x + a|, a > 0, showing the coordinates of the points where the graph meets the coordinate axes.

On the same axes, sketch the graph of $y = \frac{1}{x}$. *(b)*

Explain how your graphs show that there is only one solution of the equation *(c)*

$$x | 2x + a | -1 = 0.$$

- Find, using algebra, the value of x for which x | 2x + 1 | -1 = 0. *(d)*
- The functions f and g are defined by 12.

 $f: x \to 5x + 2, x \in \mathbb{R}$ $g: x \to \frac{1}{x}, x \in \mathbb{R}, x \neq 0$ Find the following functions stating the domain in each case. (i) $f^{-1}(x)$ (ii) fg(x) (iii) $(fg)^{-1}(x)$ (a)

- Solve the equation $f^{1}(x) = fg(x)$, giving your answers to 2 decimal places. (b)

Challenge

A cube ABCDEFGH has the square ABCD as its base with EFGH above ABCD respectively. What is the cosine of the angle CAG?

Preparation:

More integration! Read about integrating by substitution and by parts in the new textbook p101-108 and the old textbook p95-102.