г

Question		Done	Done BP Ready		Торіс	Comment									
Aa Ab					C3 Differentiation	$e^x(\sin 2x + 2\cos 2x)$									
	Ab	Ab			C3 Differentiation	2									
	Ac				C3 Differentiation	$-\frac{1}{e^x}(\csc^2 x + \cot x)$									
	Ad				C3 Differentiation	$\frac{(e^{x}+2)\sec^{2} x - e^{x} \tan x}{(e^{x}+2)^{2}}$									
	Ba				C3 Trig solve	56.6°. 236.6°									
	Bh				C3 Trig solve	45°. 225°									
	Ca				C3 Rcos	x = 1.69, 5.88									
П	Ch				C3 Rcos	x = 1.70, 4.02									
Dri	Cc				C3 Bcos	x = 0.28 + 1.04 + 3.43 + 4.18									
	Cd				C3 Rcos	x = 0.18, 4.99									
	Da				C3 Graph Sketching	Use Autograph, your graphical calculator or Desmos to check									
	Db				C3 Graph Sketching	Use Autograph, your graphical calculator or									
	D				C2 Creat Stateling	Desmos to check									
	Dc				C3 Graph Sketching	Desmos to check									
	Dd				C3 Graph Sketching	Use Autograph, your graphical calculator or Desmos to check									
	MEA				C3 Trig	2									
k Exam	MEB				C3 Trig	$q = \frac{p^2}{2} - 1$									
Moc	MEC				C3 Trig	L.H.S. = $\cos^2 2\theta + \sin^2 2\sin 2\theta - 2\sin 2\theta \cos 2\theta$ = 1 - sin 4 θ = R.H.S.									
ork	1a				C4 partial fractions	$\frac{1}{x+1} + \frac{2}{2x-1}$									
	1b				C4 partial fractions	$\frac{1}{x-2} - \frac{1}{x+2}$									
	1c				C4 partial fractions	$x + \frac{1}{2(x+1)} + \frac{1}{2(x-1)}$									
	2				C4 Binomial expansion (simple)	$\frac{1}{27} - \frac{2x}{27} + \frac{8x^2}{81} - \frac{80x^3}{729} \dots$									
	3a				C4 Binomial expansion (simple)	$1 - x - \frac{1}{2}x^2 - \frac{1}{2}x^3 + \dots$									
t w	3b				C4 Binomial expansion (estimation)	0.9899495									
ren	3c				C4 Binomial expansion (estimation)	1.4142136 (8sf)									
Cur	4a				M2 Projectiles – find height given	0.85m									
	4b				M2 Projectiles – find speed hits floor	74 ms^{-1}									
	4c				M2 Projectiles – angle makes with	47.5°									
	-				horizontal										
	5a				M2 Projectiles – horizontal projection initial velocity	24 ms ⁻¹									
	5b				M2 Projectiles – horizontal projection final speed	25 ms ⁻¹									
	5c				M2 Projectiles – angular projection, time hit ground	0.51s									
	5d				M2 Projectiles – angular projection, horizontal dist	14m									

	6			C3 Differentiation - normals	x + 2y - 3 = 0							
	7a			C3 Trig Solve	0.644,4.71							
olidation	7b			C3 Trig Solve	$0, \pi, 2\pi, 1.4^{\circ}, 4.88^{\circ}$							
	8a			C3 Trig proof	PROOF							
	8b			C3 Trig proof	PROOF							
	9a			C3 Modulus sketch	Use Autograph, your graphical calculator or							
					Desmos to check							
	9b			C3 Modulus graph transformation	Use Autograph, your graphical calculator or							
					Desmos to check							
	9c			C3 Modulus solve	a = 6 or 10							
	10a			C3 Algebraic Fractions	PROOF							
suc	10b			C3 Inverse function	(x-8)							
Ŭ					$\overline{2x-2}$							
	11a			C3 Exponential/log equations	-2.36							
	11b			C3 Exponential/log equations	0.594							
	11c			C3 Exponential/log equations	2.68							
	12a			C3 Show root	Continuous, change of sign therefore root							
	12b			C3 Numerical methods	PROOF							
	12c			C3 Numerical methods	Select $x_0 = 1$							
	12d			C3 Show root correct	consider upper and lower bounds. Continuous,							
					change of sign therefore root.							

α β	γ	δ	Е	ζ	η	θ	ı	к	λ	μ	v	ξ	0	π	ρ	σ	τ	υ	φ	χ	ψ	ω
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----------	---	---	---	---	---	---

"Mathematics is a dangerous profession; an appreciable number of us go mad"

A2 Maths with Mechanics Assignment κ (kappa)

J E Littlewood

Drill

Part A: Differentiate the following functions

(a) $e^x \sin 2x$ (b) $\frac{(2x^2-2)}{x-1}$ (c) $\frac{\cot x}{e^x}$ (d) $\frac{\tan x}{e^{x+2}}$

Part B: Solve these equations for $0 \le \theta \le 360^\circ$, giving θ to 1 decimal place where appropriate:

(a) $\sin(\theta + 15^\circ) = 3\cos(\theta + 15^\circ)$ (b) $\sin\theta\cos\theta = \frac{1}{2}$

Part C : Solve the following equations (hint: use Rcos or Rsin):

(a) $6 \sin x + 8 \cos x = 5$ (b) $7 \sin x - 24 \cos x - 10 = 0$ (c) $\cos 2x + 4 \sin 2x = 3$ (d) $5 \sin x - 8 \cos x + 7 = 0$

Part D: Sketch the following functions giving the coordinates of any intercepts with the coordinate axes.

(a) $y = 1 - e^{-x}$ (b) $y = 2 \ln(x - 2)$ (c) $y = (e^x e^2)$ (d) $y = 2 - \ln x$

C4 Partial Fractions & Binomial Expansion

1. Put the following into partial fractions:

(a)
$$\frac{4x+1}{(x+1)(2x-1)}$$
 (b) $\frac{4}{(x^2-4)}$ (c) $\frac{x^3}{x^2-1}$

2. $f(x) = (3 + 2x)^{-3}, |x| < \frac{3}{2}.$

Find the binomial expansion of f(x), in ascending powers of x, as far as the term in x^3 .

Give each coefficient as a simplified fraction.

3. (a) Expand
$$(1 - 2x)^{\frac{1}{2}}$$
, $|x| < \frac{1}{2}$, in ascending powers of x up to and including the term in x^3 .

- (b) By substituting a suitable value of x into your expansion, find an estimate for $\sqrt{0.98}$
- (c) Show that $\sqrt{0.98} = \frac{7}{10}\sqrt{2}$ and hence find the value of $\sqrt{2}$ correct to 8 significant figures.

Current work 2: Mechanics M2

<u>Appropriate accuracy</u> for final answer when using g = 9.8 is 2 sig figs For example: from your calculator write answer as 5.43.... and then your final answer as 5.4 stating (to 2sf) with units of course. Give angles in general to 1dp Provide a good sized diagram, use a ruler, avoid units on the diagram

- 4. An arrow is fired from a bow with a speed of 50 ms $^{-1}$ at an angle of 5° above the horizontal.
 - (a) Calculate the height of the arrow after 0.6 s.
 - (b) What is its speed after 6 s?
 - (c) Find the acute angle that the arrow makes with the horizontal after 6 s?
- 5. A bowler releases a cricket ball from a height of 2.25 m above a horizontal cricket pitch so that initially its path is horizontal.
 - (a) Find the speed of delivery if it is to hit the ground a horizontal distance of 16m from the point of release.
 - (b) Find the speed that the ball hits the ground.

Next ball, the bowler again releases the ball from a height of 2.25m, but at a speed of $28ms^{-1}$ at an angle of 4° below the horizontal.

- (c) Find the time taken for the ball to first hit the ground.
- (d) Find the horizontal distance travelled when the ball first hits the ground.
- 6. Given that $f(x) = 3\ln x + \frac{1}{x}$, x > 0, find the equation of the normal to this curve at x = 1.
- 7. Solve the following equations on the interval $0 \le \theta \le 2\pi$. Where possible, give exact answers. Otherwise give your answers to 3sf:
 - (a) $2\cos x \sin x = 1$ [Hint: $R \cos(x + \alpha)$] (b) $3\sin 2x = \sin x$
- 8. Prove the following identities: set these out correctly

(a) $\cot A - \tan A \equiv 2\cot 2A$ (b) $\sin^2 x (1 + \sec^2 x) \equiv \sec^2 x - \cos^2 x$

- 9. The function f is defined by $f: x \to |2x a|$, $x \in \mathbb{R}$, where a is a positive constant.
 - (a) Sketch the graph of y = f(x), showing the coordinates of the points where the graph cuts the axes.
 - (b) On a separate diagram, sketch the graph of y = f(2x), showing the coordinates of the points where the graph cuts the axes.
 - (c) Given that a solution of $f(x) = \frac{1}{2}x$ is x = 4, find the two possible values of a

10. (a) Given
$$f(x) = \frac{x}{x+3} - \frac{x+24}{2x^2+5x-3}$$
, show that $f(x) = \frac{2(x-4)}{2x-1}$

(b) Find $f^{-1}(x)$

- 11. Solve the following functions (a) $3e^{2x+5} = 4$ (b) $3^x = 5^{1-x}$ (c) $2\ln(2x-1) = 1 + \ln 7$
- 12. $f(x) = x^3 \frac{1}{x} 2, x \neq 0$ (a) Show that the equation has a root between 1 and 2.
 - (b) Re-arrange f(x) = 0 to make an iteration formula in the form $x_{n+1} = \left(a + \frac{b}{x_n}\right)^c$, where a,b,c are rational numbers to be found
 - (c) Find an approximation of the root by selecting an appropriate value for x_0 and calculating x_1, x_2, x_3, x_4 to 4 decimal places.
 - (d) Show that x = 1.395 is the root correct to 3 decimal places

Challenge questions Try this multiple choice question! Can you work out which answer is correct?

For this question decide which of the responses given is (are) correct then choose

- A if 1, 2 and 3 are correct
- B if only 1 and 2 are correct
- C if only 2 and 3 are correct
- D if only 1 is correct
- E if only 3 is correct

Given that tan(x/2) = t, then

1.
$$\cos x = \frac{1-t^2}{1+t^2}$$

2. $\sin x = \frac{2t}{1-t^2}$
3. $\frac{dx}{dt} = \frac{2}{1-t^2}$

Optional extra questions for you if you are catching up on work from the C3 mock exam

A) Given that $\sin x(\cos y + 2\sin y) = \cos x(2\cos y - \sin y)$, find the value of $\tan(x + y)$.

B) Given that $p = 2\cos\theta$ and $q = \cos 2\theta$, express q in terms of p.

C) Prove that $(\cos 2\theta - \sin 2\theta)^2 \equiv 1 - \sin 4\theta$