A2 Assignment iota Cover Sheet

| Question | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 6aiii | | | | C3 Graph transformations | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	v	ξ	o	π	ρ	σ	τ	v	φ	χ	ψ	ω

"Music is the pleasure the human soul experiences from counting without being aware that it is counting"
G W Leibnitz

A2 Maths with Mechanics Assignment l (iota)

Drill

Part A Integrate* the following functions with respect to x :
(a) $\frac{\mathrm{e}^{x}+3}{4}$
(b) $\frac{3 x \mathrm{e}^{x}-2}{x}$
(c) $-\frac{3}{4 x}$
*always use the correct notation when integrating and the constant for indefinite integration
Part B Write in the form indicated giving α as an acute angle in radians to 2 dp :
(a) $4 \sin x-3 \cos x$
(b) $\quad \begin{aligned} & 12 \sin x+5 \cos x \\ & R \sin (x+\alpha)\end{aligned}$
(c) $\cos x+\sin x$ $R \sin (x-\alpha)$
$R \cos (x-\alpha)$

Part C Sketch and state the ranges of the following functions (defined on \mathbb{R}): show asymptotes clearly
(a) $\quad f(x)=\frac{1}{x+2}+1$
(b) $g(x)=1-e^{2 x}$
(c) $\quad h(x)=\ln (1+x)$

Part D Sketch the following functions stating the domain and range in each case.
(a) $y=2-\arcsin (3 x)$
(b) $y=3+2 \arccos x$
(c) $y=-\arctan \left(\frac{1}{2} x\right)$
*note in the specifications arcsin is used, not $\sin ^{-1} \mathbf{x}$ as on your calculators

1. Express the following as partial fractions
(a) $f(x)=\frac{2 x-13}{(2 x+1)(x-3)}$
(b) $f(x)=\frac{x^{2}+5 x+7}{(x+2)^{3}}$
(c) $f(x)=\frac{x^{2}-10}{(x-2)(x+1)} *$

* this is an improper fraction

2. Use the binomial theorem to expand

$$
\sqrt{ }(4-9 x), \quad|x|<\frac{4}{9},
$$

in ascending powers of x, up to and including the term in x^{3}, simplifying each term.
3. (a) Expand $\frac{1}{\sqrt{4-3 x}}$, where $|x|<\frac{4}{3}$, in ascending powers of x up to and including the term in x^{2}. Simplify each term.
(b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{4-3 x}}$ as a series in ascending powers of x.
4.
a) $\frac{\cos A}{\sin B}-\frac{\sin A}{\cos B} \equiv \frac{2 \cos (A+B)}{\sin 2 B}$
b) $\quad \tan \frac{A}{2}+\cot \frac{A}{2} \equiv 2 \operatorname{cosec} A$
5. Prove that the equation $\frac{4 x+3}{2 x-1}+\frac{6 x+1}{2 x+1}=3$ has no real solutions.
6.

The diagram shows a sketch of the graph of $y=f(x)$.
The curve has a minimum at the point $A(1,-1)$ passed through x-axis at the origin, and the points $B(2,0)$ and C $(5,0)$; the asymptotes have equations $x=3$ and $y=2$.
(a) Sketch on separate axes, the graph of
(i) $y=|f(x)|$
(ii) $y=-f(x+1)$
(iii) $y=f(-2 x)$
(b) State the number of solutions to the equation
(i) $\quad 3|f(x)|=2$
(ii) $\quad 2|f(x)|=3$
7. Find the equations of the tangent and the normal to $y=\frac{x}{1-x}$ at the point $\left(\frac{1}{2}, 1\right)$. Where does the normal meet the curve again?
8. Find the coordinates of the stationary points on $y=\left(x^{2}-x-2\right)^{4}$
9. Given that $y=x e^{2 x}$, show that this curve has only one stationary point, find its coordinates and determine its nature.
10. Find the x coordinate of points on the curve $y=\frac{3 x^{2}+2}{2 x-3}$, where the gradient at these points is parallel to the line $y-x=0$.
11. A curve has the equation $x^{2}+2 y^{2}-x+4 y=6$
a) Show that $\frac{d y}{d x}=\frac{1-2 x}{4(y+1)}$
b) Find an equation for the normal to the curve at the point (1, -3)

Mechanics : M1 Practice (Preparation for M2)

12. A ball is thrown vertically upwards from a height 1.6 m above the ground, with a speed of $7 \mathrm{~m} \mathrm{~s}^{-1}$. Find:
a) The maximum height above the ground.
b) The speed when it hits the ground.

Challenge Question

A company logo has centrally-symetric white cross of width $\sqrt{2}$ on a dark circle. The dark corner pieces have side length 1 as indicated. What is the total area of the corners?

