Question		Ë	制		Topic	Answers
言	Aa				C3 Differentiation all methods	$\mathrm{e}^{x}(\sin x+\cos x)$
	Ab				C3 Differentiation all methods	$\frac{2 \mathrm{e}^{2 x}(\cos x+\sin x)}{\cos ^{3} x}$
	Ac				C3 Differentiation all methods	$\sin 2 x \ln x+\frac{\sin ^{2} x}{x}$
	Ad				C3 Differentiation all methods	$\frac{\cos x}{2 \sqrt{\sin x}}$
	Ae				C3 Differentiation all methods	$\cos 2 x$
	Af				C3 Differentiation all methods	$\frac{1+\sin x+\cos x}{(1+\cos x)^{2}}$
	Ba				C3 Trig solves	π
	Bb				C3 Trig solves	$\frac{5 \pi}{6}, \frac{11 \pi}{6}$
	Bc				C3 Trig solves	$\frac{2 \pi}{3}, \frac{4 \pi}{3}$
	Ca				C3 Rcos	17, 5.20
	Cb				C3 Rcos	13, 0.395
	Cc				C3 Rcos	$\sqrt{10,1.89}$
	Da				C3 Integration by inspection	$-\frac{1}{6}(2 x+1)^{-3}+c$
	Db				C3 Integration by inspection	$-\frac{1}{2}(1-x)^{6}+c$
	Dc				C3 Integration by inspection	$2 e^{\frac{1}{2} x}+c$
	Dd				C3 Integration by inspection	$-\cos (x+1)+c$
	De				C3 Integration by inspection	$\frac{1}{2} \ln \|2 x-3\|+c$
	Df				C3 Integration by inspection	$\frac{1}{3} \tan 3 x+c$
	MEA				Trig	$\begin{aligned} & \cos (\theta-\theta) \equiv \cos \theta \cos \theta+\sin \theta \sin \theta \\ & \Rightarrow \sin ^{2} \theta+\cos ^{2} \theta \equiv 1 \text { as } \\ & \cos \theta=0 \end{aligned}$
	MEBi				Trig	$\sin 35^{\circ}$
	MEBii				Trig	$\cos 7 \theta$
	MEBiii				Trig	$\tan 5 \theta$

	10				M1 Force diagram with	a) $10.8 \mathrm{~N} \quad$ b) 0.725
					friction	c) $\mathrm{F}_{\max }=3.94 \mathrm{~N}, 6 \sin 25=2.54 \mathrm{~N}$, $2.54<3.94$ so the weight remains in equilibrium
					Challenge!	1/3
					C3 Past Paper	C3 Past Paper

α	β	γ	δ	ε	ζ	η	θ	${ }^{\imath}$	κ	λ	μ	ν	ξ	o	π	ρ	σ	τ	ν	φ	χ	ψ

"A linguist would be shocked to learn that if a set is not closed this does not mean that it is open, or that ' E is dense in E ' does not mean the same thing as ' E is dense in itself'.'

J E Littlewood

A2 Maths with Mechanics Assignment θ theta

C3 Past Paper at the end of this assignment to be completed during reading week.

Drill

Part A Differentiate with respect to x :
(a) $\mathrm{e}^{x} \sin x$
(b) $\frac{\mathrm{e}^{2 x}}{\cos ^{2} x}$
(c) $\sin ^{2} x \ln x$
(d) $\sqrt{\sin x}$
(e) $\sin x \cos x$
(f) $\frac{1+\sin x}{1+\cos x}$

Part B Solve these equations for $0 \leq \theta \leq 2 \pi^{c}$
(a) $\sec \theta=-1$
(b) $\cot \theta=-\sqrt{3}$
(c) $\operatorname{cosec} \frac{1}{2} \theta=\frac{2 \sqrt{3}}{3}$

Part C By writing each of these functions in the form given, state the greatest value of each function and the smallest positive value of x (in radians to 2 dp) at which this occurs.
(a) $8 \cos x-15 \sin x, R \cos (x+\alpha)$
(b) $5 \sin x+12 \cos x, R \sin (x+\alpha)$
(c) $3 \sin x-\cos x, R \sin (x-\alpha)$

Part D Integrate the following with respect to x :by considering the reverse of differentiation
(a) $\int(2 x+1)^{-4} d x$
(b) $\quad \int 3(1-x)^{5} d x$
(c) $\int e^{\frac{x}{2}} d x$
(d) $\int \sin (x+1) d x$
(e) $\int \frac{1}{2 x-3} d x$
(f) $\int \sec ^{2} 3 x d x$

Practising your trig for C3 Mock exam w/b 20 ${ }^{\text {th }}$ November 17

Learning trig formula is vital unless you know the trig formula you will not recognise them in questions. Here are examples.
A) Using the expansion of $\cos (A-B)$ with $A=B=\theta$, show that $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$.
B) Express the following as a single sine, cosine or tangent:
i) $\sin 15^{\circ} \cos 20^{\circ}+\cos 15^{\circ} \sin 20^{\circ}$
ii) $\cos 4 \theta \cos 3 \theta-\sin 4 \theta \sin 3 \theta$
iii) $\frac{\tan 2 \theta+\tan 3 \theta}{1-\tan 2 \theta \tan 3 \theta}$

Write these out as many times as you need to remember them

Trig Identity table
$\sin 2 x=$
$\cos 2 x=$
$\cos 2 x=$
$\cos 2 x=$
$\tan 2 x=$
$\sec ^{2} x=$
$\operatorname{cosec}^{2} x=$
$\sin ^{2} x=$
$\cos ^{2} x=$
$\tan (A-B)=$
$\sin (A-B)=$
$\cos (A-B)=$
$\sin P+\sin Q=$
$\sin P-\sin Q=$
$\cos P+\cos Q=$
$\cos P-\cos Q=$

$$
\begin{aligned}
& \begin{array}{l}
\text { Trig Identity table } \\
\sin 2 x=2 \sin x \cos x
\end{array} \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& \cos 2 x=1-2 \sin ^{2} x \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x} \\
& \sec ^{2} x=1+\tan ^{2} x \\
& \operatorname{cosec}^{2} x=1+\cot ^{2} x \\
& \sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x \\
& \cos ^{2} x=\frac{1}{2}+\frac{1}{2} \cos 2 \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B} \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \sin P+\sin Q=2 \sin \left(\frac{P+Q}{2}\right) \cos \left(\frac{P-Q}{2}\right) \\
& \sin P-\sin Q=2 \cos \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right) \\
& \cos P+\cos Q=2 \cos \left(\frac{P+Q}{2}\right) \cos \left(\frac{P+Q}{2}\right) \\
& \cos P-\cos Q=-2 \sin \left(\frac{P+Q}{2}\right) \sin \left(\frac{P-Q}{2}\right)
\end{aligned}
$$

Practising the product and quotient rules for differentiation

C) Find the function $\mathrm{f}^{\prime}(x)$ where $\mathrm{f}(x)$ is
i) $\mathrm{e}^{2 x} \cos x$
ii) $e^{x} \sec 3 x$
iii) $\frac{e^{\sin x}}{\cos x}$

D) A tricky question!

Given cotx $=\mathrm{q}$ find in terms of q i) $\sin \mathrm{x}$ ii) $\tan (\mathrm{x}-45)$ iii) $\cot 2 \mathrm{x}$
hint: Make a triangle add sides q and 1 using cotx $=q$ and hence find $\sin x, \cos x$ and tan x in terms of q first.

1. Sketch the graph of $, y=\arcsin x, y=\arccos x, y=\arctan x$ labelling your axes and axes crossing points clearly
2. Given that $\arctan (x-2)=-\frac{\pi}{3}$, find the value of x

3, Show the steps by which the following iterative formulae can be derived from the given equations. State the values of the constants a and b in each case:

Equation to be solved Iterative formula
(a) $x^{2}-5 x+1=0 \quad x_{n+1}=\sqrt{a x_{n}+b}$
(b) $x^{2}-5 x+1=0$
$x_{n+1}=a+\frac{b}{x_{n}}$
(c) $4 \ln x=x$
$x_{n+1}=e^{a x_{n}}$
(d) $3 e^{x}+x-9=0$
$x_{n+1}=\ln \left(a+b x_{n}\right)$
(e) $x \ln x=5$
$x_{n+1}=e^{\left(\frac{a}{x_{n}}\right)}$
(f) $2 \cos x+3 x-1=0$

$$
x_{n+1}=\arccos \left(a+b x_{n}\right)
$$

4 Given that $f(x)=5 x-4 \sin x-2$ where x is measured in radians, show that $f(x)=0$ has a root in the interval (1.1, 1.15). Use the iterative formula $x_{n+1}=p \sin x_{n}+q$ (where p and q are constants to be found) and $x_{0}=1.1$ to find x_{4} to 3 sf.

5 The root of the equation $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x+\ln 2 x-4$ is to be estimated using the iterative formula $x_{n+1}=4-\ln 2 x_{n}$, with $x_{0}=2.4$.
(a) Showing your values of $x_{1}, x_{2}, x_{3}, \ldots$, obtain the value, to 3 decimal places, of the root.
(b) By considering the change of sign of $\mathrm{f}(x)$ in a suitable interval, justify the accuracy of your answer to part (a).
6. For each of the following functions, whose domain is the set of positive real numbers, sketch the function and hence state the range. For each function find its inverse
(a) $\mathrm{f}(x)=\frac{1}{x+1}$
(b) $\mathrm{f}(x)=(x+1)^{2}-1$
(c) $\mathrm{f}(x)=x^{2}+4 x+5$
7. Prove that if $x=\sec y$, then $\frac{d y}{d x}=\frac{1}{x \sqrt{x^{2}-1}}$
8. Using the result that $\sin P-\sin Q=2 \cos \frac{(P+Q)}{2} \sin \frac{(P-Q)}{2}$
(a) Show that $\sin 105^{\circ}-\sin 15^{\circ}=\frac{1}{\sqrt{2}}$
(b) Solve, for $0 \leq \theta \leq \pi, \sin 4 \theta-\sin 3 \theta=0$
9. Solve the following equations on the interval $0 \leq x \leq 2 \pi$. Give exact answers:
(a) $\quad \cos x\left(\sin ^{2} x-1\right)=1$
(b) $\quad \cot \left(x+\frac{\pi}{6}\right)=\sqrt{3}$

M1 Practice (Preparation for M2)

10. A weight of 6 N rests on a rough 25° incline. The perpendicular reaction is measured to be 10 N . A horizontal force H pushes the weight so that it is just on the point of slipping up the plane.
a) Complete a force diagram and find force H
b) Find μ, the coefficient of friction.

Force H is now removed
c) Showing all your calculations clearly, justify whether the 6 N weight will slide down the plane, or remain in equilibrium.

Challenge Question - have a go!
Triangle ABC has $A \hat{B} C=90$ and $A \hat{C} B=30$. If a point inside the triangle is chosen at random, what is the probability it is nearer $A B$ than it is to $A C$?

PAST PAPER NEXT PAGE

Complete this past paper (C3 June 2006) in 1 hour 30mins
If it takes longer draw a line under where you got to in the time allowed and continue.

- Do it under exam conditions.
- Do not use the mark scheme until you have done the whole paper
- Mark it yourself using the mark scheme on the VLE and write down your $\%$ on the paper.
- Do your corrections in another colour.
- Hand it to your teacher with your assignment

1. (a) Simplify $\frac{3 x^{2}-x-2}{x^{2}-1}$.
(b) Hence, or otherwise, express $\frac{3 x^{2}-x-2}{x^{2}-1}-\frac{1}{x(x+1)}$ as a single fraction in its simplest form.
2. Differentiate, with respect to x,
(a) $\mathrm{e}^{3 x}+\ln 2 x$,
(b) $\left(5+x^{2}\right)^{\frac{3}{2}}$.

Figure 1

Figure 1 shows part of the curve with equation $y=\mathrm{f}(x), x \in \mathbb{R}$, where f is an increasing function of x. The curve passes through the points $P(0,-2)$ and $Q(3,0)$ as shown.

In separate diagrams, sketch the curve with equation
(a) $y=|f(x)|$,
(b) $y=\mathrm{f}^{-1}(x)$,
(c) $y=\frac{1}{2} \mathrm{f}(3 x)$.

Indicate clearly on each sketch the coordinates of the points at which the curve crosses or meets the axes.
4. A heated metal ball is dropped into a liquid. As the ball cools, its temperature, $T^{\circ} \mathrm{C}, t$ minutes after it enters the liquid, is given by

$$
T=400 \mathrm{e}^{-0.05 t}+25, \quad t \geq 0
$$

(a) Find the temperature of the ball as it enters the liquid.
(b) Find the value of t for which $T=300$, giving your answer to 3 significant figures.
(c) Find the rate at which the temperature of the ball is decreasing at the instant when $t=50$. Give your answer in ${ }^{\circ} \mathrm{C}$ per minute to 3 significant figures.
(d) From the equation for temperature T in terms of t, given above, explain why the temperature of the ball can never fall to $20^{\circ} \mathrm{C}$.
5.

Figure 2

Figure 2 shows part of the curve with equation

$$
y=(2 x-1) \tan 2 x, \quad 0 \leq x<\frac{\pi}{4} .
$$

The curve has a minimum at the point P. The x-coordinate of P is k.
(a) Show that k satisfies the equation

$$
4 k+\sin 4 k-2=0 .
$$

The iterative formula

$$
x_{n+1}=\frac{1}{4}\left(2-\sin 4 x_{n}\right), \quad x_{0}=0.3,
$$

is used to find an approximate value for k.
(b) Calculate the values of x_{1}, x_{2}, x_{3} and x_{4}, giving your answers to 4 decimals places.
(c) Show that $k=0.277$, correct to 3 significant figures.
6. (a) Using $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$, show that the $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta \equiv 1$.
(b) Hence, or otherwise, prove that

$$
\begin{equation*}
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta \equiv \operatorname{cosec}^{2} \theta+\cot ^{2} \theta \tag{2}
\end{equation*}
$$

(c) Solve, for $90^{\circ}<\theta<180^{\circ}$,

$$
\begin{equation*}
\operatorname{cosec}^{4} \theta-\cot ^{4} \theta=2-\cot \theta \tag{6}
\end{equation*}
$$

7. For the constant k, where $k>1$, the functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto \ln (x+k), \quad x>-k \\
& \mathrm{~g}: x \mapsto|2 x-k|, \quad x \in \mathbb{R}
\end{aligned}
$$

(a) On separate axes, sketch the graph of f and the graph of g.

On each sketch state, in terms of k, the coordinates of points where the graph meets the coordinate axes.
(b) Write down the range of f .
(c) Find $\mathrm{fg}\left(\frac{k}{4}\right)$ in terms of k, giving your answer in its simplest form.

The curve C has equation $y=\mathrm{f}(x)$. The tangent to C at the point with x-coordinate 3 is parallel to the line with equation $9 y=2 x+1$.
(d) Find the value of k.
8. (a) Given that $\cos A=\frac{3}{4}$, where $270^{\circ}<A<360^{\circ}$, find the exact value of $\sin 2 A$.
(5)
(b) (i) Show that $\cos \left(2 x+\frac{\pi}{3}\right)+\cos \left(2 x-\frac{\pi}{3}\right) \equiv \cos 2 x$.
(3)

Given that

$$
y=3 \sin ^{2} x+\cos \left(2 x+\frac{\pi}{3}\right)+\cos \left(2 x-\frac{\pi}{3}\right)
$$

(ii) show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin 2 x$.

Finished and done all the questions?
Now mark it using the MARK SCHEME on the next page. ONLY look at this once you have completed the full 1 hour 30 mins exam

Question number	Scheme	Marks
1. (a)	$\frac{(3 x+2)(x-1)}{(x+1)(x-1)},=\frac{3 x+2}{x+1}$ Notes M1 attempt to factorise numerator, usual rules B1 factorising denominator seen anywhere in (a), A1 given answer If factorisation of denom. not seen, correct answer implies B1 Expressing over common denominator $\frac{3 x+2}{x+1}-\frac{1}{x(x+1)}=\frac{x(3 x+2)-1}{x(x+1)}$ [Or "Otherwise" : $\frac{\left(3 x^{2}-x-2\right) x-(x-1)}{x\left(x^{2}-1\right)}$] Multiplying out numerator and attempt to factorise $\left\lfloor 3 x^{2}+2 x-1 \equiv(3 x-1)(x+1)\right\rfloor$ Answer: $\frac{3 x-1}{x}$	M1B1, A1 M1 M1 A1 (3) Total 6 marks
2. (a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \mathrm{e}^{3 x}+\frac{1}{x}$ Notes B1 $3 e^{3 x}$ M1 $: \frac{a}{b x}$ A1: $3 \mathrm{e}^{3 x}+\frac{1}{x}$	B1M1A1 (3)
(b)	$\begin{aligned} & \left(5+x^{2}\right)^{\frac{1}{2}} \\ & \frac{3}{2}\left(5+x^{2}\right)^{\frac{1}{2}} \cdot 2 x \quad=3 x\left(5+x^{2}\right)^{\frac{1}{2}} \quad \text { M1 for } \\ & k x\left(5+x^{2}\right)^{m} \end{aligned}$	B1 M1 A1 (3) Total 6 marks

| Question
 Number | Scheme | Marks |
| :---: | :---: | :---: | :--- |
| 3. (a) | Mod graph, reflect for $y<0$ | | M1

Question Number	Scheme	Marks
4. (a) (b) (c) (d)	$\begin{aligned} & 425^{\circ} \mathrm{C} \\ & 300=400 \mathrm{e}^{-0.05 t}+25 \quad \Rightarrow 400 \mathrm{e}^{-0.05 t}=275 \\ & \text { sub. } T=300 \text { and attempt to rearrange to } \mathrm{e}^{-0.05 t}=a \text {, where } a \in \mathrm{Q} \\ & e^{-0.05 t}=\frac{275}{400} \end{aligned}$ M1 correct application of logs $\begin{aligned} & t=7.49 \\ & \frac{\mathrm{~d} T}{\mathrm{~d} t}=-20 \mathrm{e}^{-0.05 t} \end{aligned}$ (M1 for $k \mathrm{e}^{-0.05 t}$) At $t=50$, rate of decrease $=(\pm) 1.64{ }^{\circ} \mathrm{C} / \mathrm{min}$ $T>25, \quad$ (since $\mathrm{e}^{-0.05 t} \rightarrow 0$ as $t \rightarrow \infty$)	B1 M1 A1 M1 A1 (4) M1 A1 A1 B1 Total 9 marks

Question Number	Scheme	Marks	
6. (a) ${ }^{(a)}$	Dividing $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$ by $\sin ^{2} \theta$ to give $\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \equiv \frac{1}{\sin ^{2} \theta}$ Completion: $1+\cot ^{2} \theta \equiv \operatorname{cosec}^{2} \theta \Rightarrow \operatorname{cosec}^{2} \theta-\cot ^{2} \theta \equiv 1$ AG	M1 A1*	(2)
	$\begin{aligned} & \operatorname{cosec}^{4} \theta-\cot ^{4} \theta \equiv\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)\left(\operatorname{cosec}^{2} \theta+\cot ^{2} \theta\right) \\ & \equiv\left(\operatorname{cosec}^{2} \theta+\cot ^{2} \theta\right) \quad \text { using (a) } \quad \text { AG } \end{aligned}$ Notes: (i) Using LHS $=\left(1+\cot ^{2} \theta\right)^{2}-\cot ^{4} \theta$, using (a) \& elim. $\cot ^{4} \theta$ M1, conclusion \{using (a) again\} A1* (ii) Conversion to sines and cosines: needs $\frac{\left(1-\cos ^{2} \theta\right)\left(1+\cos ^{2} \theta\right)}{\sin ^{4} \theta}$ for M1	$\begin{aligned} & \text { M1 } \\ & \text { A1* } \end{aligned}$	(2)
	Using (b) to form $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta \equiv 2-\cot \theta$	M1	
	Forming quadratic in $\cot \theta$ $\Rightarrow 1+\cot ^{2} \theta+\cot ^{2} \theta \equiv 2-\cot \theta \quad\{\text { using (a) }\}$	M1	
	$2 \cot ^{2} \theta+\cot \theta-1=0$	A1	
	Solving: $\quad(2 \cot \theta-1)(\cot \theta+1)=0 \quad$ to $\cot \theta=$	M1	
	$\left(\cot \theta=\frac{1}{2}\right) \quad \text { or } \quad \cot \theta=-1$	A1	
	$\theta=135^{\circ} \quad \text { (or correct value(s) for candidate dep. on 3Ms) }$	A1 $\sqrt{ }$	(6)
	Note: Ignore solutions outside range Extra "solutions" in range loses A1 $\sqrt{ }$, but candidate may possibly have more than one "correct" solution.		
			rks)

Question Number	Scheme	Marks
7. $\quad(a)$	 Log graph: Shape Intersection with -ve x axis $(0, \ln k),(1-k, 0)$	B1 dB1 B1
	 Mod graph :V shape, vertex on + ve x-axis $(0, k) \text { and }\left(\frac{k}{2}, 0\right)$	B1 B1 (5)
	$\mathrm{f}(x) \in \mathrm{R} \quad, \quad-\infty<\mathrm{f}(x)<\infty,-\infty<y<\infty$	B1 (1)
	$\begin{aligned} \operatorname{fg}\left(\frac{k}{4}\right) & =\ln \left\{\mathrm{k}+\left\|\frac{2 k}{4}-k\right\|\right\} \quad \text { or } \quad \mathrm{f}\left(\left\|-\frac{k}{2}\right\|\right) \\ & =\ln \left(\frac{3 k}{2}\right) \end{aligned}$	M1 A1 (2)
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x+k}$	B1
		$\begin{aligned} & \text { M1; A1 } \\ & \text { A1 } \sqrt{ } \quad \text { (4) } \\ & \quad \text { (12 marks) } \end{aligned}$

