Name:

Question		\#	号	Topic	Comment
需	Аа)			C4 Integration Reverse chain	$\frac{1}{6}(2 x-1)^{3}+c$
	Ab)			C4 Integration Inspection	$\frac{1}{2} x^{2}-\frac{1}{2} \sec 2 x+c$
	Ac)			C4 Integration Inspection	$\frac{1}{2} \ln x+c$
	Ba)			C3 Differentiation - product rule \& chain rule	$3 e^{5 x}(1+5 x)$
	Bb)			C3 Differentiation - product rule \& chain rule	$-e^{-3 x}\left(3 \cot x+\operatorname{cosec}^{2} x\right)$
	Bc)			C3 Differentiation - product rule \& chain rule	$\ln (2-x)-\frac{x}{2-x}$
	Bd)			C3 Differentiation - product rule \& chain rule	$2 x^{-1} \ln 3 x$
	Ca)			C3 Functions - Inverse, domain and range	$f^{-1}(x)=1+\sqrt{x-4}$
	Cb)			C3 Functions - Inverse, domain and range	$f^{-1}(x)=-2+\sqrt{x+5}$
	Cc)			C3 Functions - Inverse, domain and range	$f^{-1}(x)=\sqrt{x+4}-2$
	Da)			C3 Trig equations	$\frac{\pi}{3}, \frac{5 \pi}{3}, 1.82,4.46$
	Db)			C3 Trig equations	$\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{11 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}$
$\begin{aligned} & \text { x } \\ & \text { B } \\ & 3 \\ & 0 \\ & 0 \\ & U \\ & 0 \end{aligned}$	1a			C3 Differentiation - all types	$\cos x \ln 2 x+\frac{1}{x} \sin x$
	1b			C3 Differentiation - all types	$36 x \sec \left(6 x^{2}+5\right) \tan \left(6 x^{2}+5\right)$
	1c			C3 Differentiation - all types	$-3 \cos ^{5}\left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right)$
	1d			C3 Differentiation - all types	$e^{2 x}\left(2 \ln 2 x+x^{-1}\right)$
	1e			C3 Differentiation - all types	$2 x \sec ^{2}\left(x^{2}+3\right)$
	1 f			C3 Differentiation - all types	$4 \sec ^{2} 2 x \tan 2 x$
	1 g			C3 Differentiation - all types	
	1h			C3 Differentiation - all types	$4-\frac{1}{4} e^{x}$
	1i			C3 Differentiation - all types	$-\frac{2}{x^{3}}-\frac{3}{x^{4}}$
	1 j			C3 Differentiation - all types	
	1k			C3 Differentiation - all types	$2 e^{x}-\frac{4}{x}$
	11			C3 Differentiation - all types	$\frac{3-3 \sin x+3 x \cos x}{(1-\sin x)^{2}}$
	1m			C3 Differentiation - all types	$\frac{e^{x}(x \ln x-1)}{x(\ln x)^{2}}$

α	β	γ	δ	ε	ζ	η	θ	\imath	κ	λ	μ	v	ξ	o	π	ρ	σ	τ	v	φ	χ	ψ	ω

"The mathematician's patterns, like the painter's or the poet's, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test."

G H Hardy

A2 Maths with Mechanics Assignment ζ (zeta) due in w / b 6/11

Drill

Part A Integrate the following with respect to x :
(a) $(2 x-1)^{2}$
(b) $x-\sec 2 x \tan 2 x$
(c) $\frac{1}{2 x}$

Part B Find:
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(3 x e^{5 x}\right)$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left(e^{-3 x} \cot x\right)$
(c) $\frac{\mathrm{d}}{\mathrm{d} x}(x \ln (2-x))$
(d) $\frac{\mathrm{d}}{\mathrm{d} x}\left((\ln 3 x)^{2}\right)$

Part C Find the equations of the inverses of the following functions where each function is defined on its given domain, stating the domain and range of the new inverse functions:
(a) $\quad f(x)=(x-1)^{2}+4, \quad x \geq 1$
(b)* $\quad f(x)=x^{2}+4 x-1, \quad x \geq-2$
(c)* $f(x)=x^{2}+4 x, \quad x \geq-2 \quad$ *complete the square first

Part D Solve the following equations on the interval $0 \leq \theta \leq 2 \pi$. Give exact answers where you can, but otherwise give your answers to 3sf:
(a) $\tan ^{2} \theta+2 \sec \theta=7$
(b) $\operatorname{cosec}^{2} 2 \theta=2$

Current Work:

1. Differentiate these functions with respect to x :
(a) $y=\sin x \ln 2 x$
(b) $y=3 \sec \left(6 x^{2}+5\right)$
(c) $y=\cos ^{6}\left(\frac{x}{2}\right)$
(d) $y=e^{2 x} \ln 2 x$
(e) $y=\tan \left(x^{2}+3\right)$
(f) $y=\sec ^{2} 2 x$
(g) $y=5 \ln x$
(h) $y=4 x-1 / 4 \mathrm{e}^{x}$
(i) $y=\frac{x+1}{x^{3}}$
(j) $y=\ln 8 x$
(k) $y=2 \mathrm{e}^{x}-2 \ln x^{2}$
(l) $y=\frac{3 x}{1-\sin x}$
(m) $y=\frac{e^{x}}{\ln x}$
(n) $\quad y=3 \ln x-\ln 3 x$
(o) $y=\ln \sqrt{x}-2 \ln \left({ }^{1} / x\right)$
2. Find the exact value(s) of x which satisfy the equations:
(a) $\quad \ln (6 x+1)=1$
(b) $\mathrm{e}^{3 x-1}=2$
(c) $\mathrm{e}^{2 x}=\mathrm{e}^{\mathrm{x}}+12$
(d) $e^{2 x} e^{x+1}=28$
3. The curve with equation $y=x^{2} \ln x$ is defined for positive values of x. Determine the coordinates of the stationary point and find the equation of the tangent at the point $\left(e, e^{2}\right)$
4. The curve C with equation $y=e^{2 x-1}$ meets the y axis at P. The tangent to C at P crosses the x axis at Q. Find the area of the triangle $P O Q$ where O is the origin.
5. Given that $\int_{2}^{4}\left(3 t^{2}-2 t-k t^{-2}\right) d t=40$, find the value of the constant k.
6. Given that $\mathrm{f}(x)=\frac{2}{x-1}-\frac{6}{(x-1)(2 x+1)}, x>1$,
(a) Prove that $\mathrm{f}(x)=\frac{4}{2 x+1}$
(b) Find the range of f .
(c) Find $\mathrm{f}^{-1}(x)$ and state its domain.
(d) State the range of $\mathrm{f}^{-1}(x)$.
7. Prove the following identities:
(a) $\frac{\sin x}{1-\cos x} \equiv \cot \frac{x}{2}$
(b) $\quad \sin (A+B)+\sin (A-B) \equiv 2 \sin A \cos B$
8. Express $\frac{x^{2}-8 x+15}{x^{2}-9} \times \frac{2 x^{2}+6 x}{(x-5)^{2}}$ as a single fraction in its simplest form.
9. A beaker of liquid is heated and then allowed to cool. The temperature of the liquid, $\theta^{\circ} \mathrm{C}$, is related to the time, t minutes, for which it has been cooling by the equation $\theta=15+65 \mathrm{e}^{-0.2 t}$. Calculate how long it takes the liquid to cool to $35^{\circ} \mathrm{C}$, giving your answer, in minutes, correct to 2sf.

M1 Practice (Preparation for M2)

10. A sledge of mass 150 kg is being held on a snowy slope by a rope parallel to the slope. If the slope makes an angle of 35° to the horizontal and the coefficient of friction is 0.02 , what is the least force needed to
a) hold it stationary
b) start it moving up the slope.

Challenge - why not try this one this week!

11. A circle is inscribed in an equilateral triangle. Small circles are then inscribed in each corner as shown. What is the ratio of the area of a small circle to the area of the large circle?

Extra Questions (optional):

If you did not do well in the tracking test, here are some extra questions you can try to strengthen your weak areas.

A)

Given that

$$
x=\sec ^{2} y+\tan y,
$$

show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\cos ^{2} y}{2 \tan y+1} \tag{4}
\end{equation*}
$$

(a) Use the derivatives of $\sin x$ and $\cos x$ to prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(\tan x)=\sec ^{2} x \tag{4}
\end{equation*}
$$

The tangent to the curve $y=2 x \tan x$ at the point where $x=\frac{\pi}{4}$ meets the y-axis at the point P.
B) (b) Find the y-coordinate of P in the form $k \pi^{2}$ where k is a rational constant.
(a) (i) Show that

$$
\sin (x+30)^{\circ}+\sin (x-30)^{\circ} \equiv a \sin x^{\circ}
$$

where a is a constant to be found.
(ii) Hence find the exact value of $\sin 75^{\circ}+\sin 15^{\circ}$, giving your answer in the form $b \sqrt{6}$.
(b) Solve, for $0 \leq y \leq 360$, the equation
C)

$$
\begin{equation*}
2 \cot ^{2} y^{\circ}+5 \operatorname{cosec} y^{\circ}+\operatorname{cosec}^{2} y^{\circ}=0 \tag{6}
\end{equation*}
$$

