Qu	estion	Done	Back	Торіс	Comment
	Aa)			C4 Integration Reverse chain	$\frac{1}{6}(2x-1)^3 + c$
Drill	Ab)			C4 Integration Inspection	$\frac{1}{2}x^2 - \frac{1}{2}\sec 2x + c$
	Ac)			C4 Integration Inspection	$\frac{1}{2}\ln x + c$
	Ba)			C3 Differentiation – product rule & chain rule	$3e^{5x}(1+5x)$
	Bb)			C3 Differentiation – product rule & chain rule	$-e^{-3x}(3\cot x + \csc^2 x)$
	Bc)			C3 Differentiation – product rule & chain rule	$\ln(2-x) - \frac{x}{2-x}$
	Bd)			C3 Differentiation – product rule & chain rule	$2x^{-1}\ln 3x$
	Ca)			C3 Functions – Inverse, domain and range	$f^{-1}(x) = 1 + \sqrt{x - 4}$
	Cb)			C3 Functions – Inverse, domain and range	$f^{-1}(x) = -2 + \sqrt{x+5}$
	Cc)			C3 Functions – Inverse, domain and range	$f^{-1}(x) = \sqrt{x+4} - 2$
	Da)			C3 Trig equations	$\frac{\pi}{3}, \frac{5\pi}{3}, 1.82, 4.46$
	Db)			C3 Trig equations	$\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{11\pi}{8}, \frac{13\pi}{8}, \frac{15\pi}{8}$
	1a			C3 Differentiation – all types	$\cos x \ln 2x + \frac{1}{x} \sin x$
	1b			C3 Differentiation – all types	$36x \sec(6x^2+5)\tan(6x^2+5)$
	1c			C3 Differentiation – all types	$-3\cos^5\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)$
	1d			C3 Differentiation – all types	$e^{2x}(2\ln 2x + x^{-1})$
	1e			C3 Differentiation – all types	$2x\sec^2(x^2+3)$
	1f			C3 Differentiation – all types	$4 \sec^2 2x \tan 2x$
ork	1g			C3 Differentiation – all types	$\frac{5}{x}$
Current Work	1h			C3 Differentiation – all types	$\frac{1}{4-\frac{1}{4}e^x}$
Curr	1i			C3 Differentiation – all types	$-\frac{2}{x^3}-\frac{3}{x^4}$
	1j			C3 Differentiation – all types	$\frac{1}{x}$
	1k			C3 Differentiation – all types	$2e^x - \frac{4}{x}$
	11			C3 Differentiation – all types	$\frac{3-3\sin x+3x\cos x}{(1-\sin x)^2}$
	1m			C3 Differentiation – all types	$\frac{e^{x}(x\ln x - 1)}{x(\ln x)^{2}}$

1n	C3 Differentiation – all types	2
		x
10	C3 Differentiation – all types	$\frac{5}{2x}$
		2 <i>x</i>
2a	C3 e and natural log equations	$\frac{1}{6}(e-1)$
2b	C3 e and natural log equations	$\frac{1}{3}(\ln 2 + 1)$
2c	C3 e and natural log equations	2ln2
2d	C3 e and natural log equations	
20		$\frac{1}{3}(\ln 28 - 1)$
3	C3 Differentiation – stationary points and tangent	$\left(e^{-\frac{1}{2}}, -0.5e^{-1}\right)$ $y = 3ex - 2e^{2}$
4	C3 Differentiation –tangent and triangle	$\frac{1}{4e}$
5	C2 Integration	$\frac{4e}{k=16}$
6a	C3 Algebraic fractions	Proof
6b	C3 Functions - range	$f \in \mathfrak{R} : f \neq 0$
6c	C3 Functions – inverse & domain	
		$f^{-1}(x) = \frac{4-x}{2x}, x \in \Re : x \neq 0$
6d	C3 Functions – inverse & range	$f^{-1}(x) > 1$
7a	C3 Trig identities	PROOF
7b	C3 Trig identities	PROOF
8	C3 Algebraic fractions	$\frac{2x}{x-5}$
9	Diff eq	$\frac{x-5}{5.9 \text{ mins}}$
<u>ల</u> 10	M1 Force diagrams with friction.	(a) 820 N (b) 870 N
01 Bractice	with Force diagrams with metion.	(a) 620 IN (b) 670 IN
	Circles inscribed in a triangle.	1:9
Challenge		
	C3 Differentiation x =	Show that
S		
lestion	C3 Differentiation - find tangent and y coordinate	a) show b) $k = -1/4$
Extra questions	C3 Trig proof & Solve	a) i) show ii) $\frac{\sqrt{6}}{2}$ b) 210, 330

"The mathematician's patterns, like the painter's or the poet's, must be beautiful: the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test."

G H Hardy

A2 Maths with Mechanics Assignment ζ (zeta) due in w/b 6/11

Drill

Part A Integrate the following with respect to *x*:

(a) $(2x-1)^2$ (b) $x - \sec 2x \tan 2x$ (c) $\frac{1}{2x}$

Part B Find:

(a) $\frac{d}{dx}(3xe^{5x})$ (b) $\frac{d}{dx}(e^{-3x}\cot x)$ (c) $\frac{d}{dx}(x\ln(2-x))$

(d) $\frac{\mathrm{d}}{\mathrm{d}x} ((\ln 3x)^2)$

Part C Find the equations of the inverses of the following functions where each function is defined on its given domain, stating the domain and range of the new inverse functions:

(a) $f(x) = (x-1)^2 + 4$, $x \ge 1$ (b)* $f(x) = x^2 + 4x - 1$, $x \ge -2$ (c)* $f(x) = x^2 + 4x$, $x \ge -2$ *complete the square first

Part D Solve the following equations on the interval $0 \le \theta \le 2\pi$. Give exact answers where you can, but otherwise give your answers to 3sf:

(a) $\tan^2 \theta + 2\sec \theta = 7$ (b) $\csc^2 2\theta = 2$

Current Work:

1. Differentiate these functions with respect to *x*:

(a)
$$y = \sin x \ln 2x$$
 (b) $y = 3 \sec(6x^2 + 5)$ (c) $y = \cos^6\left(\frac{x}{2}\right)$
(d) $y = e^{2x} \ln 2x$ (e) $y = \tan(x^2 + 3)$ (f) $y = \sec^2 2x$
(g) $y = 5\ln x$ (h) $y = 4x - \frac{1}{4}e^x$ (i) $y = \frac{x+1}{x^3}$
(j) $y = \ln 8x$ (k) $y = 2e^x - 2\ln x^2$ (l) $y = \frac{3x}{1 - \sin x}$

(m)
$$y = \frac{e^x}{\ln x}$$
 (n) $y = 3\ln x - \ln 3x$ (o) $y = \ln \sqrt{x} - 2\ln(\frac{1}{x})$

- 2. Find the exact value(s) of *x* which satisfy the equations:
 - ln(6x + 1) = 1 $e^{2x} = e^{x} + 12$ (b) $e^{3x-1} = 2$ $e^{2x} e^{x+1} = 28$ (a) (c)
- The curve with equation $y = x^2 \ln x$ is defined for positive values of x. Determine the coordinates of the stationary 3. point and find the equation of the tangent at the point (e, e^2)
- The curve C with equation $y = e^{2x-1}$ meets the y axis at P. The tangent to C at P crosses the x axis at Q. Find the 4. area of the triangle *POQ* where *O* is the origin.
- Given that $\int_{2}^{4} (3t^{2} 2t kt^{-2}) dt = 40$, find the value of the constant *k*. Given that $f(x) = \frac{2}{x-1} \frac{6}{(x-1)(2x+1)}, \quad x > 1$, 5.
- 6.
 - Prove that $f(x) = \frac{4}{2x+1}$ (a) (b) Find the range of f.
 - Find $f^{-1}(x)$ and state its domain. (d) State the range of $f^{-1}(x)$. (c)
- 7. Prove the following identities:

(a)
$$\frac{\sin x}{1-\cos x} \equiv \cot \frac{x}{2}$$
 (b) $\sin(A+B) + \sin(A-B) \equiv 2\sin A \cos B$

Express $\frac{x^2 - 8x + 15}{x^2 - 9} \times \frac{2x^2 + 6x}{(x - 5)^2}$ as a single fraction in its simplest form. 8.

A beaker of liquid is heated and then allowed to cool. The temperature of the liquid, θ° C, is related to the time, t 9. minutes, for which it has been cooling by the equation $\theta = 15 + 65e^{-0.2t}$. Calculate how long it takes the liquid to cool to 35°C, giving your answer, in minutes, correct to 2sf

M1 Practice (Preparation for M2)

- A sledge of mass 150 kg is being held on a snowy slope by a rope parallel to the slope. If the slope makes 10. an angle of 35° to the horizontal and the coefficient of friction is 0.02, what is the least force needed to
 - a) hold it stationary b) start it moving up the slope.

Challenge – why not try this one this week!

11. A circle is inscribed in an equilateral triangle. Small circles are then inscribed in each corner as shown. What is the ratio of the area of a small circle to the area of the large circle?

Extra Questions (optional):

If you did not do well in the tracking test, here are some extra questions you can try to strengthen your weak areas.

A)

C)

Given that

$$x = \sec^2 y + \tan y$$
,

show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos^2 y}{2\tan y + 1}.$$
(4)

(a) Use the derivatives of $\sin x$ and $\cos x$ to prove that

$$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x. \tag{4}$$

The tangent to the curve $y = 2x \tan x$ at the point where $x = \frac{\pi}{4}$ meets the y-axis at the point *P*.

- **B**) (b) Find the y-coordinate of P in the form $k\pi^2$ where k is a rational constant. (6)
 - (a) (i) Show that

 $\sin(x+30)^\circ + \sin(x-30)^\circ \equiv a\sin x^\circ,$

where a is a constant to be found.

- (*ii*) Hence find the exact value of $\sin 75^\circ + \sin 15^\circ$, giving your answer in the form $b\sqrt{6}$. (6)
- (b) Solve, for $0 \le y \le 360$, the equation

$$2\cot^2 y^{\circ} + 5\csc y^{\circ} + \csc^2 y^{\circ} = 0.$$
 (6)