A2 Assignment alpha Cover Sheet
Name:

Question		-		Topic	Comment
言	1 i			C3 Differentiation trig	$\frac{d y}{d x}=4 \cos 4 x$
	1ii			C3 Differentiation trig	$\frac{d y}{d x}=-6 \sin 6 x$
	1iii			C3 Differentiation trig	$\frac{d y}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2}$
	2 i			C3 Differentiation trig chain	$f^{\prime}(x)=4 \sin ^{3} x \cos x$
	2ii			C3 Differentiation trig chain	$f^{\prime}(x)=-6 \cos ^{5} x \sin x$
	2iii			C3 Differentiation trig chain	$f^{\prime}(x)=\frac{1}{2} \tan ^{-\frac{1}{2}} x \sec ^{2} x$
	3 i			C4 Integration Reverse chain	$-\frac{1}{4} \cos 4 x+c$
	3ii			C4 Integration Reverse chain	$\frac{1}{18}(3 x+2)^{6}+c$
	3iii			C4 Integration Reverse chain	$\sin (x+2)+c$
	4(a)(i)			C2 Solve exponential eq.	-3
	4(a)(ii)			C2 Solve In equation	$-1 / 3$
	4(b)(i)			C3 Differentiate ln	1/3
	1a			C3 Differentiation all \& factorising to simplify	$6 x\left(x^{2}-5\right)^{2}$
	1b			C3 Differentiation all \& factorising to simplify	$20 \sin ^{3} 5 x \cos 5 x$
	1c			C3 Differentiation all \& factorising to simplify	$x\left(5 x^{3}-3 x+6\right)$
	1d			C3 Differentiation all \& factorising to simplify	$\frac{1}{2}(x-1)^{-\frac{1}{2}}(3 x-1)$
	1 e			C3 Differentiation all \& factorising to simplify	$-2(3 x-1)^{-2}$
	1f			C3 Differentiation all \& factorising to simplify	$\frac{x^{2}\left(x^{2}+3\right)}{\left(x^{2}+1\right)^{2}}$
	2			C3 Find normal	$4 x+3 y-10=0, \quad 10 x+3 y-95=0$
	3			C3 Stationary Points	$(1,1)$ max, $(-1,-1)$ min
	4a(i)			C2 log solves, no calc	$\text { Max at }\left(\frac{1}{2}, \frac{1}{2 e}\right)$
	4a(ii)			C2 log solves, no calc	$\begin{aligned} & \text { Min at }(0,0) \text {, } \\ & \max \text { at }\left(2,4 \mathrm{e}^{-2}\right) \end{aligned}$
	4b			C2 log solves, no calc	$-\frac{1}{3 e}$
	5a			C3 Sketch exponentials	Check with google - inc asymptotes
	5b			C3 Sketch exponentials	Check with google - inc asymptotes
	5c			C3 Sketch exponentials	Check with google - inc asymptotes

6				C1 Sketch quadratic	Check with google - inc asymptotes		
$7 \mathrm{7a}$				C3 reciprocal trig solve	$\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}$		
7 c				C3 reciprocal trig solve	$0, \frac{3 \pi}{4}, \pi, \frac{7 \pi}{4}, 2 \pi$	$⿻$	8 a
:---							
8 b							
9							

A2 Maths with Mechanics Assignment α (alpha)
 due 25/9

Assignments explained

Drill section contains short questions to improve your speed and accuracy

Drill

Part A Differentiate the following using the correct notation
(a) $y=\sin 4 x$
(b) $y=\cos 6 x$
(c) $y=\tan \frac{x}{2}$

Part B Differentiate the following using the correct notation
(a) $f(x)=\sin ^{4} x$
(b) $f(x)=\cos ^{6} x$
(c) $f(x)=\sqrt{\tan x}$

Part C Integrate the following functions by working out what has been differentiated:
(a) $\int \sin 4 x d x$
(b) $\int(3 x+2)^{5} d x$
(c) $\int \cos (x+2) d x$

Part D Without a calculator, find the values of these logarithms (showing your method):
(a) $\log _{2} \frac{1}{8}$
(b) $\quad \log _{8} 0.5$
(c) $\quad \log _{27} 3$

Current Work

Do your corrections and find similar questions to practise to strengthen weaknesses from your work in the Continuing with Confidence booklet

Consolidation

1. Differentiate the following functions: hint use the chain, product and quotient rules
(a) $y=\left(x^{2}-5\right)^{3}$
(b) $y=\sin ^{4} 5 x$
(c) $\mathrm{y}=\left(x^{2}-1\right)\left(x^{3}+3\right)$
(d) $\mathrm{f}(x)=(x+1)(x-1)^{\frac{1}{2}}$
(e) $\mathrm{f}(\mathrm{x})=\frac{2 x}{3 x-1}$
(f) $\quad \mathrm{f}(x)=\frac{x^{3}}{x^{2}+1}$
2. On the curve with equation $y=(3 x+1)^{1 / 2}$, the points P and Q have x coordinates of 1 and 8 respectively. Find equations of the normals to the curve at P and Q.
3. For the curve with equation $y=\frac{2 x}{1+x^{2}}$ show that $\frac{d y}{d x}=\frac{2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$. Find the coordinates of the stationary points and distinguish between them.
4. (a) Determine the nature of any stationary points on these curves.
(i) $y=x \mathrm{e}^{-2 x}$
(ii) $y=x^{2} \mathrm{e}^{-x}$
(b) Find the minimum value of $\mathrm{f}(x)=x^{3} \ln x$
5. Sketch the following functions showing clearly any asymptotes:
(a) $y=2^{-x}$
(b) $y=1-4^{x}$
(c) $y=3^{x+1}$
6. Sketch the quadratic $y=-3 x^{2}+6 x-9$ indicating any intercepts and the turning point. Show your working clearly.
7. Solve the following equations on the interval $0 \leq \theta \leq 2 \pi$. Give exact answers.
(a) $\sqrt{3} \sec 2 \theta=2$
(b) $\quad \sec ^{2} x+\tan x-1=0$
8. Prove the following identities, setting out your proof clearly:
(a) $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} \equiv \cos 2 \theta$
(b) $\frac{\sin \theta}{1+\cos \theta}+\frac{1-\cos \theta}{\sin \theta} \equiv \frac{2 \sin \theta}{1+\cos \theta}$

M1 moments

9. A uniform rod AB of length 4 m and mass 2 kg is suspended in a horizontal position by two vertical strings attached at points P and Q where $A P=1 \mathrm{~m}$ and $A Q=3 \mathrm{~m}$. When a particle of mass 3 kg is attached at point R of the rod, the rod is on the point of turning about P . Calculate the distance AR
10. Eliminate θ from the equations $x=\cos 2 \theta, y=\sec \theta$
