Question		Done	Backpack	Торіс	Comment
Drill	1i			C3 Differentiation trig	$\frac{dy}{dx} = 4\cos 4x$
	1ii			C3 Differentiation trig	$\frac{dx}{dx} = -6\sin 6x$
	1iii			C3 Differentiation trig	$\frac{dy}{dx} = \frac{1}{2}\sec^2\frac{x}{2}$
	2i			C3 Differentiation trig chain	$f'(x) = 4\sin^3 x \cos x$
	2ii			C3 Differentiation trig chain	$f'(x) = -6\cos^5 x \sin x$
	2iii			C3 Differentiation trig chain	$f'(x) = \frac{1}{2} \tan^{-\frac{1}{2}} x \sec^2 x$
	3i			C4 Integration Reverse chain	$-\frac{1}{4}\cos 4x + c$
	3ii			C4 Integration Reverse chain	$\frac{1}{18}(3x+2)^6$ +c
	3iii			C4 Integration Reverse chain	sin(x+2)+c
	4(a)(i)			C2 Solve exponential eq.	-3
	4(a)(ii)			C2 Solve In equation	-1/3
	4(b)(i)			C3 Differentiate In	1/3
	1a			C3 Differentiation all & factorising to simplify	$6x(x^2-5)^2$
Consolidation	1b			C3 Differentiation all & factorising to simplify	$20\sin^3 5x\cos 5x$
	1c			C3 Differentiation all & factorising to simplify	$x(5x^3-3x+6)$
	1d			C3 Differentiation all & factorising to simplify	$\frac{1}{2}(x-1)^{-\frac{1}{2}}(3x-1)$
	1e			C3 Differentiation all & factorising to simplify	$-2(3x-1)^{-2}$
	1f			C3 Differentiation all & factorising to simplify	$\frac{x^2(x^2+3)}{(x^2+1)^2}$
	2			 C3 Find normal	4x+3y-10=0 $10x+3y-95=0$
	3			C3 Stationary Points	$(1, 1) \max(-1, -1) \min$
	4a(i)			C2 log solves, no calc	Max at $\left(\frac{1}{4}, \frac{1}{4}\right)$
	4a(ii)			C2 log solves, no calc	$\frac{(2^{+}2e)}{\text{Min at } (0, 0),}$ max at $(2^{-}4e^{-2})$
	4b			C2 log solves, no calc	$-\frac{1}{-1}$
	5a			C3 Sketch exponentials	3e Check with google – inc asymptotes
	5b			C3 Sketch exponentials	Check with google – inc asymptotes
	5c			C3 Sketch exponentials	Check with google – inc asymptotes

	6		C1 Sketch quadratic	Check with google – inc
				asymptotes
	7a		C3 reciprocal trig solve	$\frac{\pi}{2},\frac{11\pi}{2},\frac{13\pi}{2},\frac{23\pi}{2}$
	7c		C3 reciprocal trig solve	$0, \frac{3\pi}{4}, \pi, \frac{7\pi}{4}, 2\pi$
	8a		C3 Trig Proof Pythagorean Identities	PROOF
	8b		C3 Trig Proof Pythagorean Identities	PROOF
	9		M1 Moments	1/3
	10		C4 Parametric to Cartesian conversion	$x = \frac{2}{y^2} - 1$

"A mathematician is a machine for turning coffee into theorems"

A2 Maths with Mechanics Assignment α (alpha)

P Erdos

due 25/9

Assignments explained

Drill section contains short questions to improve your speed and accuracy

Drill

Part A Differentiate the following using the correct notation

(a) $y = \sin 4x$ (b) $y = \cos 6x$ (c) $y = \tan \frac{x}{2}$

Part B Differentiate the following using the correct notation

(a) $f(x) = \sin^4 x$ (b) $f(x) = \cos^6 x$ (c) $f(x) = \sqrt{\tan x}$

Part C Integrate the following functions by working out what has been differentiated:

(a)
$$\int \sin 4x \, dx$$
 (b) $\int (3x+2)^5 \, dx$ (c) $\int \cos(x+2) \, dx$

Part D Without a calculator, find the values of these logarithms (showing your method):

(a) $\log_2 \frac{1}{8}$ (b) $\log_8 0.5$ (c) $\log_{27} 3$

Current Work

Do your corrections and find similar questions to practise to strengthen weaknesses from your work in the Continuing with Confidence booklet

Consolidation

1. Differentiate the following functions: hint use the chain, product and quotient rules

(a) $y = (x^2 - 5)^3$ (b) $y = \sin^4 5x$

(c)
$$y = (x^2 - 1)(x^3 + 3)$$
 (d) $f(x) = (x + 1)(x - 1)^{\frac{1}{2}}$

(e)
$$f(x) = \frac{2x}{3x-1}$$
 (f) $f(x) = \frac{x^3}{x^2+1}$

- 2. On the curve with equation $y = (3x+1)^{\frac{1}{2}}$, the points *P* and *Q* have *x* coordinates of 1 and 8 respectively. Find equations of the normals to the curve at *P* and *Q*.
- 3. For the curve with equation $y = \frac{2x}{1+x^2}$ show that $\frac{dy}{dx} = \frac{2(1-x^2)}{(1+x^2)^2}$. Find the coordinates of the stationary points and distinguish between them.

- (i) $y = xe^{-2x}$ (ii) $y = x^2e^{-x}$
- (b) Find the minimum value of $f(x) = x^3 \ln x$
- 5. Sketch the following functions showing clearly any asymptotes:
 - (a) $y=2^{-x}$ (b) $y=1-4^{x}$ (c) $y=3^{x+1}$
- 6. Sketch the quadratic $y = -3x^2 + 6x 9$ indicating any intercepts and the turning point. Show your working clearly.
- 7. Solve the following equations on the interval $0 \le \theta \le 2\pi$. Give exact answers.

(a) $\sqrt{3} \sec 2\theta = 2$ (b) $\sec^2 x + \tan x - 1 = 0$

8. Prove the following identities, setting out your proof clearly:

(a) $\frac{1-\tan^2\theta}{1+\tan^2\theta} \equiv \cos 2\theta$ (b) $\frac{\sin\theta}{1+\cos\theta} + \frac{1-\cos\theta}{\sin\theta} \equiv \frac{2\sin\theta}{1+\cos\theta}$

M1 moments

9. A uniform rod AB of length 4m and mass 2kg is suspended in a horizontal position by two vertical strings attached at points P and Q where AP=1m and AQ=3m.When a particle of mass 3kg is attached at point R of the rod, the rod is on the point of turning about P. Calculate the distance AR

10. Eliminate θ from the equations $x = \cos 2\theta$, $y = \sec \theta$