SECTION I

Questions 1-20

(Twenty questions)

- 1. $e^{\frac{1}{2} \ln x} =$
 - A $ln(x^2)$
 - **B** $ln(\sqrt{x})$
 - $\mathbf{C} \quad x^2$
 - $D = \frac{1}{2}x$
 - $\mathbf{E} \cdot \sqrt{x}$
- $2. \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x-1}{\sqrt{x}} \right) =$
 - A $2\sqrt{x}$
 - $\mathbf{B} \quad \frac{x+1}{x\sqrt{x}}$
 - $\mathbf{C} \quad \frac{3x-1}{2\sqrt{x}}$
 - $\mathbf{D} \quad \frac{x+1}{2x\sqrt{x}}$
 - $\mathbf{E} \quad \frac{3x-1}{2x\sqrt{x}}$
- 3. $\cos (\pi + \theta) \equiv$
 - $A \cos \theta$
 - $\mathbf{B} \cos \theta$
 - $\mathbf{C} \sin \theta$
 - $D \sin \theta$
 - $\mathbf{E} 1 + \cos \theta$

4. The complete solution set of the inequality $x^2 + 2x - 15 < 0$,

where $x \in \mathbb{R}$, is

- A $\{x: x > -5\}$
- B $\{x: -5 < x < 3\}$
- C $\{x: x > 3\}$
- **D** $\{x: -3 < x < 5\}$
- E $\{x: x < -5\} \cup \{x: x > 3\}$
- 5. $\int \tan x \, \mathrm{d}x =$
 - A $\ln \cos x + \text{constant}$
 - $\mathbf{B} \quad \sec^2 x + \text{constant}$
 - C $\ln \sec x + \text{constant}$
 - **D** $\ln \csc x + \text{constant}$
 - E $\ln \sin x + \text{constant}$
- 6. $\sum_{r=1}^{n} r^2 =$
 - A n(n + 1)/2
 - B $n^2(n+1)^2/4$
 - C n(n+1)(n+2)/3
 - $\mathbf{D} \quad n(n+1)(2n+1)/3$
 - E n(n+1)(2n+1)/6

- 7. $z^2 + 1 \equiv$
 - **A** (z+1)(z-1)
 - **B** $(z+1)^2$
 - C $(z + i)^2$
 - $\mathbf{D} \quad (z+i)(z-i)$
 - E none of the above
- 8. The first two terms in the binomial expansion of $\frac{1}{3x-2}$, where $|x| < \frac{2}{3}$, in ascending powers of x are

$$A - \frac{1}{2}, -\frac{3x}{4}$$

B
$$-\frac{1}{2}$$
, $+\frac{3x}{4}$

$$C = \frac{1}{2}, -\frac{3x}{4}$$

D
$$\frac{1}{3}$$
, $+\frac{2x}{9}$

$$\mathbf{E} \quad \frac{1}{3x}, + \frac{2}{9x^2}$$

PQRS is a parallelogram. The coordinates of R are

- A (3, 1)
- **B** (4, 1)
- C (4, 2)
- D (3, 2)
- E (2, 1)

10. Given that x = a is an approximation to a root of the equation f(x) = 0, then, in general, a closer approximation is given by

$$A \quad x = a + \frac{f(a)}{f'(a)}$$

$$\mathbf{B} \quad x = a + \frac{\mathbf{f}'(a)}{\mathbf{f}(a)}$$

$$C \quad x = a - \frac{f(a)}{f'(a)}$$

$$\mathbf{D} \quad x = a - \frac{\mathbf{f}'(a)}{\mathbf{f}''(a)}$$

$$\mathbf{E} \quad x = a - \frac{\mathbf{f}'(a)}{\mathbf{f}(a)}$$

11.
$$\mathbf{u} = 4\mathbf{i} - 3\mathbf{j}, \mathbf{v} = -6\mathbf{i} + 3\mathbf{j}.$$

$$A - 2i$$

$$\mathbf{B} - 24\mathbf{i} - 9\mathbf{j}$$

$$\mathbf{C} - 3$$

12. Which one of the following can be seen, BY INSPECTION, NOT to be a factor of

$$6x^4 - 5x^3 - 53x^2 + 45x - 9$$
?

A
$$2x-1$$

B
$$x-3$$

$$C x + 3$$

D
$$3x - 1$$

$$\mathbf{E} + 4x - 3$$

13.
$$\frac{x+7}{x^2-x-6}$$

A
$$\frac{2}{x-3} - \frac{1}{x+2}$$

B
$$\frac{2}{x+2} - \frac{1}{x-3}$$

C
$$\frac{9}{5(x-2)} - \frac{4}{5(x+3)}$$

$$\mathbf{D} \quad \frac{4}{5(x-2)} - \frac{9}{5(x+3)}$$

$$E = \frac{1}{x+2} + \frac{2}{x-3}$$

14. Given that $\cos^2 x = \frac{16}{25}$, where $x \in \mathbb{R}$ and $\pi \le x \le 2\pi$, then the possible value(s) of $\sin x$ is (are)

A
$$\frac{3}{5}$$
 only

$$\mathbf{B} - \frac{3}{5}$$
 only

$$C \pm \frac{3}{5}$$

$$\mathbf{D} - \frac{3}{4}$$
 only

$$\mathbf{E} \pm \frac{3}{4}$$

15. Given that $x = t^2$, $y = t^3$, then $\frac{dx}{dy} = \frac{dx}{dy}$

$$A = \frac{1}{t}$$

$$\mathbf{B} = \frac{2}{3t}$$

$$C = \frac{3t}{2}$$

$$\mathbf{D} = \frac{2t}{3}$$

$$\mathbf{E} = \frac{3}{2t}$$

16. $\sin \theta + \sqrt{3} \cos \theta = r \cos (\theta + \alpha)$, where r > 0 and $-\pi/2 \le \alpha \le \pi/2$.

A
$$r=2$$
, $\alpha=\pi/6$

B
$$r=2$$
, $\alpha=\pi/3$

C
$$r=2$$
, $\alpha=-\pi/3$

$$\mathbf{D} \quad r=2, \quad \alpha=-\pi/6$$

$$\mathbf{E} \quad r=4, \quad \alpha=-\pi/6$$

The area, in square units, of the shaded region is

$$A = \frac{1}{2}$$

$$\mathbf{B} \quad \frac{1}{4}$$

$$\mathbf{E} = \frac{1}{8}$$

18. The roots of the equation $x^2 - 4x + 7 = 0$ are α and β . An equation whose roots are α/β and β/α is

$$A 7x^2 - 2x - 7 = 0$$

$$\mathbf{B} \quad 7x^2 + 2x + 7 = 0$$

$$C 7x^2 - 2x + 7 = 0$$

$$\mathbf{D} \quad 7x^2 - 30x + 7 = 0$$

- 19. Which one of the following is an odd function of x?
 - A $f: x \mapsto |x|^3$
 - **B** $f: x \mapsto \sin^2 x$
 - C $f: x \mapsto (1-x)^5$
 - **D** $f: x \mapsto e^{-x}$
 - E $f: x \mapsto -\sin 2x$

20. Given that

$$\lg(y+2)+2\lg x=1,$$

then y =

- A $\frac{1}{x^2} 2$
- B $\frac{5}{x} 2$
- $C = \frac{10}{r^2} 2$
- **D** $\frac{1}{2x} 2$
- E $8 x^2$

SECTION II

Questions 21-30

(Ten Questions)

- 21. Given that tan(x/2) = t, then
 - 1 $\cos x = \frac{1-t^2}{1+t^2}$
 - 2 $\sin x = \frac{2t}{1-t^2}$
 - $3 \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2}{1-t^2}$
- 22. l is the line with equation 4x 3y = 5.
 - 1 The gradient of l is -4/3
 - 2 l touches the circle $x^2 + y^2 = 1$
 - 3 The area of the finite region enclosed by l and the coordinate axes is 25/24 units²
- 23. The circle $x^2 + y^2 + 2gx + 2fy + c = 0$ has centre (-2, 4) and radius 6.
 - 1 g = -2
 - f = 4
 - 3 c = -16

- **24.** $z = \frac{2-i}{1+2i}$.
 - |z| = 1
 - $2 zz^* = 1$
 - $3 \quad z + z^* = 0$
- 25. $f(x) \equiv x^3 + 3x 5$.
 - 1 The equation f(x) = 0 has just one real root
 - 2 The equation f(x) = 0 has a root in the interval [1, 2]
 - 3 The curve y = f(x) has just one asymptote
- 26. p, q, r are 3 positive unequal integers in geometric progression.
 - $1 \quad pr = q^2$
 - 2 $\sqrt{(r/p)}$ is the common ratio of the progression
 - 3 $\ln p$, $\ln q$ and $\ln r$ are numbers in arithmetic progression

27.
$$3^x = 1.72$$
.

- $1 \quad x = \log_3 1.72$
- 2 $5.16 = 3^{1+x}$
- 3 $3.44 = 3^{2x}$
- 28. Which of the following relations will give a straight line when $\frac{1}{r}$ is plotted against y?

$$1 xy + 3x = 2$$

$$2 \quad x + y = 2xy$$

$$3 \quad \frac{2}{x} + y = 3x$$

29. f and g are functions of x defined for $x \in \mathbb{R}$. It is necessarily true that

1
$$f^{-1} = \frac{1}{f}$$

2
$$(fg)^{-1} = f^{-1}g^{-1}$$

3 ff⁻¹:
$$x \mapsto x$$

- 30. The plane x 2y 4z = 3
 - 1 passes through the point (-1, 1, -1)
 - 2 meets the x-axis at the point (3, 0, 0)
 - 3 is perpendicular to the line x = t 2, y = 4 2t, z = 7 4t

Problem

Arcs

The shape below is made up of six joined quarter circle arcs, all of equal radius r.

What is the area of the shape in terms of r?