6679/01

Edexcel GCE

Mechanics M3

Advanced Level

Thursday 16 June 2011 - Afternoon
 Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)

Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Mechanics M3), the paper reference (6679), your surname, other name and signature.
Whenever a numerical value of g is required, take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.
When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
There are 7 questions in this question paper.
The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. A particle P of mass 0.5 kg moves on the positive x-axis under the action of a single force directed towards the origin O. At time t seconds the distance of P from O is x metres, the magnitude of the force is $0.375 x^{2} \mathrm{~N}$ and the speed of P is $v \mathrm{~m} \mathrm{~s}^{-1}$.

When $t=0, O P=8 \mathrm{~m}$ and P is moving towards O with speed $2 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Show that $v^{2}=260-\frac{1}{2} x^{3}$.
(b) Find the distance of P from O at the instant when $v=5$.
2.

Figure 1
The shaded region R is bounded by the curve with equation $y=9-x^{2}$, the positive x-axis and the positive y-axis, as shown in Figure 1. A uniform solid S is formed by rotating R through 360° about the x-axis.

Find the x-coordinate of the centre of mass of S.
3.

Figure 2
A solid consists of a uniform solid right cylinder of height $5 l$ and radius $3 l$ joined to a uniform solid hemisphere of radius $3 l$. The plane face of the hemisphere coincides with a circular end of the cylinder and has centre O, as shown in Figure 2.

The density of the hemisphere is twice the density of the cylinder.
(a) Find the distance of the centre of mass of the solid from O.

Figure 3
The solid is now placed with its circular face on a plane inclined at an angle θ° to the horizontal, as shown in Figure 3. The plane is sufficiently rough to prevent the solid slipping. The solid is on the point of toppling.
(b) Find the value of θ.
4.

Figure 4

A light inextensible string has its ends attached to two fixed points A and B. The point A is vertically above B and $A B=7 a$. A particle P of mass m is fixed to the string and moves in a horizontal circle of radius $3 a$ with angular speed ω. The centre of the circle is C where C lies on $A B$ and $A C=4 a$, as shown in Figure 4. Both parts of the string are taut.
(a) Show that the tension in AP is $\frac{5}{7} m\left(3 a \omega^{2}+g\right)$.
(b) Find the tension in $B P$.
(c) Deduce that $\omega \geq \frac{1}{2} \sqrt{\left(\frac{g}{a}\right)}$.
5. A particle P of mass m is attached to one end of a light elastic string of natural length l and modulus of elasticity 3 mg . The other end of the string is attached to a fixed point O on a rough horizontal table. The particle lies at rest at the point A on the table, where $O A=\frac{7}{6} l$. The coefficient of friction between P and the table is μ.
(a) Show that $\mu \geq \frac{1}{2}$.

The particle is now moved along the table to the point B, where $O B=\frac{3}{2} l$, and released from rest. Given that $\mu=\frac{1}{2}$, find
(b) the speed of P at the instant when the string becomes slack,
(c) the total distance moved by P before it comes to rest again.
6.

Figure 5
A particle P is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle is held at the point A, where $O A=a$ and $O A$ is horizontal. The point B is vertically above O and the point C is vertically below O, with $O B=O C=a$, as shown in Figure 5. The particle is projected vertically upwards with speed $3 \sqrt{ }(a g)$.
(a) Show that P will pass through B.
(b) Find the speed of P as it reaches C.

As P passes through C it receives an impulse. Immediately after this, the speed of P is $\frac{5}{12} \sqrt{ }(11 a g)$ and the direction of motion of P is unchanged.
(c) Find the angle between the string and the downward vertical when P comes to instantaneous rest.
7. A particle P of mass 0.5 kg is attached to the mid-point of a light elastic string of natural length 1.4 m and modulus of elasticity 2 N . The ends of the string are attached to the points A and B on a smooth horizontal table, where $A B=2 \mathrm{~m}$. The mid-point of $A B$ is O and the point C is on the table between O and B where $O C=0.2 \mathrm{~m}$. At time $t=0$ the particle is released from rest at C. At time t seconds the length of the string $A P$ is $(1+x) \mathrm{m}$.
(a) Show that the tension in $B P$ is $\frac{2}{7}(3-10 x) \mathrm{N}$.
(b) Find, in terms of x, the tension in $A P$.
(c) Show that P performs simple harmonic motion with period $2 \pi \sqrt{\left(\frac{7}{80}\right)} \mathrm{s}$.
(d) Find the greatest speed of P during the motion.

The point D lies between O and A, where $O D=0.1 \mathrm{~m}$.
(e) Find the time taken by P to move directly from C to D.

TOTAL FOR PAPER: 75 MARKS
END

