GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M2

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M2 Paper E - Marking Guide

1. $\mathbf{I}=\Delta$ mom. $12 \mathbf{i}-9 \mathbf{j}=0.6[(5 \mathbf{i}+3 \mathbf{j})-\mathbf{u}] \quad$ M1 A1

$$
20 \mathbf{i}-15 \mathbf{j}=5 \mathbf{i}+3 \mathbf{j}-\mathbf{u} \quad \text { M1 }
$$

$\mathbf{u}={ }^{-} 15 \mathbf{i}+18 \mathbf{j} \quad$ A1
(4)
2. (a) when $t=0, x=2+0-\frac{1}{10}=1.9 \mathrm{~m}$

M1 A1
(b) $\quad v=\frac{\mathrm{d} x}{\mathrm{~d} t}=1-\frac{1}{10} \mathrm{e}^{t}$
at rest when $v=0 \quad 1-\frac{1}{10} \mathrm{e}^{t}=0 \quad \therefore \quad \mathrm{e}^{t}=10$
$t=\ln 10=2.3(1 \mathrm{dp})$
A1
M1 A1
A1
(6)
3. (a)

(b) resolve $\uparrow: \quad R+\mu S-20 g=0 \therefore R=20 g-\mu S$
resolve \rightarrow : $\quad T-S=0 \quad \therefore S=T$
eliminating S gives $\quad R=20 g-\frac{1}{3} T$
mom. about top of ladder $T(4 \sin \theta)+20 g(3 \cos \theta)-R(6 \cos \theta)=0$
A1
$4 T \tan \theta+60 g-6 R=0$
M1 A1
$10 T+60 g-120 g+2 T=0 \quad \therefore 12 T=60 g$ and $T=5 g$
M1
A1
(c) attach rope lower down ladder/wall

B1
gives larger moment about top of ladder with same tension
B1
4. (a) (i), (ii)

portion	mass	x	y	$m x$	$m y$
$A B$	$2 a \rho$	0	a	0	$2 a^{2} \rho$
$B C$	$3 a \rho$	$\frac{3}{2} a$	0	$\frac{9}{2} a^{2} \rho$	0
$C D$	$a \rho$	$3 a$	$\frac{1}{2} a$	$3 a^{2} \rho$	$\frac{1}{2} a^{2} \rho$
total	$6 a \rho$	\bar{x}	\bar{y}	$\frac{15}{2} a^{2} \rho$	$\frac{5}{2} a^{2} \rho$

$$
\begin{array}{ll}
\rho=\text { mass per unit area } \quad x, y \text { coords. taken horiz./ vert. from } B & \text { M2 A2 } \\
\bar{x}=\frac{\frac{15}{2} a^{2} \rho}{6 a \rho}=\frac{5 a}{4} \text { from } A B & \text { M1 A1 } \\
\bar{y}=\frac{\frac{5}{2} a^{2} \rho}{6 a \rho}=\frac{5 a}{12} \text { from } B C & \text { M1 A1 }
\end{array}
$$

(b) $2 a-\frac{5 a}{12}=\frac{19 a}{12}$

$\tan \theta=\frac{\frac{5}{4} a}{\frac{19}{12} a}=\frac{15}{19} \therefore \theta=38^{\circ}$ (nearest degree)
5.
$\frac{P}{v}-R-m g \sin \alpha=0$
$\frac{P}{20}-4400-40000(9.8) \frac{1}{20}=0$
$P=20(4400+19600)=480000 \mathrm{~W}=480 \mathrm{~kW}$
M1 A1
M1
M1 A1
(b) $\frac{P}{v}-R=m a \therefore \frac{480000}{20}-4400=40000 a$
M1 A1
$a=0.49 \mathrm{~ms}^{-2}$
(c) at max. speed, $a=0 \quad \therefore \frac{P}{v}-R=0$
$\frac{480000}{v}-4400=0$ so $v=109 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
(d) model not suitable - lorry unable to attain $109 \mathrm{~ms}^{-1}(\approx 245 \mathrm{mph})$
B2
6. (a) cons. of mom: $2 M(U)+0=2 M(V)+5 M(4)$

M1

$$
U=V+10
$$

$\frac{4-V}{U-0}=\frac{3}{4} \quad \therefore 4-V=\frac{3}{4} U$
A1
solve simul. giving $U=8$
M1 A1
M1 A1
(b) $s_{y}=-\frac{1}{2} g t^{2}={ }^{-1} 19.6, t^{2}=4 \quad \therefore t=2$

M2 A1
(c) $v_{x}=4, \quad v_{y}=0-g t={ }^{-} 19.6$

M1 A1
req'd angle $=\tan ^{-1} \frac{19.6}{4}=78.5^{\circ}(3 \mathrm{sf})$ below horizontal
M1 A1
7. (a)

$m=$ mass of $P \quad d=A B$
resolve perp. to plane: $R-m g \cos \alpha=0 \quad \therefore R=m g\left(\frac{3}{5}\right)$
M1 A1
frictional force $=\mu R=\frac{12}{35} \mathrm{mg}$
A1
work done against friction $=$ loss in $\mathrm{KE}-$ gain in PE
$\frac{12}{35} m g d=\frac{1}{2} m(5.6)^{2}-m g d \sin \alpha=15.68 m-\frac{4}{5} m g d$
M1
$\frac{40}{35} g d=\frac{1}{2}(5.6)^{2} \therefore d=1.4 m$
M1 A1
(b) work done against friction $=$ loss in KE (as PE returns to initial value)

$$
\begin{array}{ll}
\frac{12}{35} m g \times 2.8=\frac{1}{2} m\left(5.6^{2}-v^{2}\right) & \text { M2 A1 } \\
1.92 g=5.6^{2}-v^{2} & \text { M1 } \\
v^{2}=12.544 \quad \therefore v=3.5 \mathrm{~ms}^{-1}(2 \mathrm{sf}) & \text { M1 A1 }
\end{array}
$$

Total

Performance Record - M2 Paper E

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \hline \mathbf{i}, \mathbf{j} \\ & \text { impulse } \end{aligned}$	variable accel.	statics	centre of mass	power	collisions, projectiles	work energy	
Marks	4	6	11	12	13	13	16	75
Student								

