Name: \qquad

TT5 remedial work

Date:

Time: 0 minute
Total marks available: 60
Total marks achieved: \qquad

Peter Vermeer

Questions

Q1.
(a) Express $2 \cos \theta-\sin \theta$ in the form $R \cos (\theta+a)$, where R and a are constants, $R>0$ and $0<a$ 90° Give the exact value of R and give the value of a to 2 decimal places.
(b) Hence solve, for $0 \leq \theta<360^{\circ}$,

$$
\frac{2}{2 \cos \theta-\sin \theta-1}=15
$$

Give your answers to one decimal place.
(c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which

$$
\frac{2}{2 \cos \theta+\sin \theta-1}=15
$$

Give your answer to one decimal place.

Q2.

The rate of decay of the mass of a particular substance is modelled by the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{5}{2} x, \quad t \geqslant 0
$$

where x is the mass of the substance measured in grams and t is the time measured in days.
Given that $x=60$ when $t=0$,
(a) solve the differential equation, giving x in terms of t. You should show all steps in your working and give your answer in its simplest form.
(b) Find the time taken for the mass of the substance to decay from 60 grams to 20 grams.

Give your answer to the nearest minute.

Q3.

Figure 1
Figure 1 shows a sketch of part of the curve with equation $y=x^{2} \ln x, x \geq 1$
The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x $=2$

The table below shows corresponding values of x and y for $y=x^{2} \ln x$

x	1	1.2	1.4	1.6	1.8	2
y	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.
(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.
(c) Use integration to find the exact value for the area of R.

Q4.
With respect to a fixed origin O, the line I_{1} is given by the equation

$$
\mathbf{r}=\left(\begin{array}{r}
8 \\
1 \\
-3
\end{array}\right)+\mu\left(\begin{array}{r}
-5 \\
4 \\
3
\end{array}\right)
$$

where μ is a scalar parameter.
The point A lies on I_{1} where $\mu=1$
(a) Find the coordinates of A.

The point P has position vector $\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)$.
The line I_{2} passes through the point P and is parallel to the line I_{1}
(b) Write down a vector equation for the line I_{2}
(c) Find the exact value of the distance $A P$.

Give your answer in the form $k \sqrt{2}$, where k is a constant to be determined.

The acute angle between $A P$ and I_{2} is θ.
(d) Find the value of $\cos \theta$

A point E lies on the line I_{2}
Given that $A P=P E$,
(e) find the area of triangle $A P E$,
(f) find the coordinates of the two possible positions of E.

Q5.
A car of mass 800 kg is moving on a straight road which is inclined at an angle θ to the horizontal, where $\sin \theta=1$

20 . The resistance to the motion of the car from non-gravitational forces is modelled as a constant force of magnitude R newtons. When the car is moving up the road at a constant speed of $12.5 \mathrm{~ms}^{-1}$, the engine of the car is working at a constant rate of $3 P$ watts. When the car is moving down the road at a constant speed of $12.5 \mathrm{~ms}^{-1}$, the engine of the car is working at a constant rate of P watts.
(a) Find
(i) the value of P,
(ii) the value of R.

When the car is moving up the road at $12.5 \mathrm{~ms}^{-1}$ the engine is switched off and the car comes to rest, without braking, in a distance d metres. The resistance to the motion of the car from non-gravitational forces is still modelled as a constant force of magnitude R newtons.
(b) Use the work-energy principle to find the value of d.

Q6.

Figure 1
The uniform lamina $O B C$ is one quarter of a circular disc with centre O and radius 4 m . The points A and D, on $O B$ and $O C$ respectively, are 3 m from O. The uniform lamina $A B C D$, shown shaded in Figure 1, is formed by removing the triangle $O A D$ from $O B C$.

Gaforn that tentferbtrof discs of one quarter of a uniform circular disc of radius r is at a distance
(a) find the distance of the centre of mass of the lamina $A B C D$ from $A D$.

The lamina is freely suspended from D and hangs in equilibrium.
(b) Find, to the nearest degree, the angle between $D C$ and the downward vertical.

(Total for question = 9 marks)

Examiner's Report

Q1.
In part (a) the majority of students found R and α correctly. The most frequent error was in stating $\tan \alpha=-\frac{1}{2}$ or occasionally $\tan \alpha=2$. In just a few responses, a decimal value rather than a surd was given for R losing the last mark.

A majority of students scored 3 or 4 marks out of 5 on part (b). A common error was the lack of accuracy in calculations, with answers of 32.9 (rather than 33.0) commonly seen. Many students were able to successfully find a second solution to the given equation.

Part (c) proved to be discriminating with only a small minority of students being successful. Having solved part (b) by going from $\cos (\theta+26.57)=0.5068$ to $\theta+26.57=59.54$ to $\theta=$ $59.54-26.57$, it was hoped that for part (c) we would see students go from $\cos (\theta-26.57)=$ 0.5068 to $\theta=59.54+26.57$. However, most correct answers came from a total restart and students therefore undertaking a great deal of work. One common error was to state the smallest answer in part (b) with little or no working, assuming that the equation in part (c) was the same as that in part (b). Another error was to somehow attempt to use the minimum or maximum values of the cosine function, sometimes using -1 in any way possible.

Q2.
This question on the topic of differential equations discriminated well across students of all abilities.

In part (a), the majority of students separated the variables correctly to give $\int \frac{1}{x} \mathrm{~d} x=\int-\frac{5}{2} \mathrm{~d} t$ and
integrated both sides to give a correct equation containing a constant of integration. A minority who separated their variables to obtain either $\int x \mathrm{~d} x=\int-\frac{5}{2} \mathrm{~d} t$ or $\int \frac{2 x}{5} \mathrm{~d} x=\int-1 \mathrm{~d} t$ made little progress with the rest of the question. Although the majority of students used $t=0, x=60$ to find the value of their constant of integration, some wrote their final answer as $\ln x=-\frac{5}{2}$ $2 t+\ln 60$
without progressing to make x the subject whilst others used incorrect algebraic manipulation to obtain a final answer of $x=\mathrm{e}^{-\frac{5}{2} t}+60$.

Those students who obtained either $x=60 e^{-\frac{5}{2} t}$ or $\ln x=-\frac{5}{2}$
$2 t+\ln 60$ in part (a) were often able to complete part (b) successfully, with most converting their time in days to a time in minutes, although some made rounding errors. Although most students substituted $x=20$ into their part (a) equation there were a minority who substituted $x=40$ after misunderstanding the question posed in part (b).

Q3.
The majority of students found part (a) and part (b) to be accessible and gained full marks. In part (a), it was extremely rare to see anything other than 0.6595 for the missing value, with occasionally a few students writing 0.6594 . The application of the trapezium rule was usually correct and the final answer usually rounded to 3 decimal places. Errors seen included the use of an incorrect multiplier of $\frac{1}{5}$ or $\frac{1}{12}$ or a missing/extra term in the bracket. Some miscalculated their answer from a correctly written expression for the approximate area. It was rare for students to find the approximate area as a sum of separate trapezia.

In part (c) most students recognised that integration by parts was required and this was often completed correctly. Some students labelled u and $\frac{d v}{d x}$
$d x$ the wrong way round and a common
error was to integrate x^{2} to give $2 x$. Following the first stage of integration by parts, some students attempted to integrate x^{3} $3 \cdot \frac{1}{x}$ x using 'by parts' a second time rather than simplifying this expression first to give $\frac{x^{2}}{3}$ 3. Other students incorrectly obtained $\frac{x^{3}}{6}$ after integrating $\frac{x^{2}}{3}$. Whilst
the majority applied the limits of 2 and 1 correctly and subtracted the correct way round to give a correct exact answer of $\frac{8}{3} \ln 2-\frac{7}{9}$, some used a lower limit of 0 or made bracketing or sign errors whilst others gave a decimal answer to varying degrees of accuracy including some who possibly believed that an answer of 1.070614704 was exact.

Q4.
This question on the topic of vectors discriminated well across students of all abilities. Students generally scored well on part (a) to part (d) with parts part (e) and part (f) proving to be effective discriminators.

In part (a), most students substituted $\mu=1$ into I_{1} to find the correct coordinates of A.
In part (b), most students used the information given in the question to write down a correct equation for I_{2}, but some students were penalised for writing an expression for I_{2} rather than an equation for I_{2}.

In part (c) most students used correct algebra to find an expression for $\overrightarrow{A P}$ and used Pythagoras to calculate the length of this vector. A small number, however, stopped after finding (the vector) $\overrightarrow{A P}$.

In part (d), the majority of students applied the dot product formula between $\overrightarrow{A P}$ and the direction vector of I_{2} and found $\cos \theta=\underline{4}$
5. Some students, however, who applied the dot product formula between $\overrightarrow{P A}$ and the direction vector of I_{2} found $\cos \theta=-\frac{4}{5}$ 5, but only a few then argued that $\cos \theta=\frac{4}{5}$ 5 because the angle θ is acute. Other students lost the final mark in part (d) by finding θ as 36.87° without making reference to $\cos \theta=\frac{4}{5}$
5. A minority of students applied the dot product formula between a pair of non-relevant vectors which sometimes included $\overrightarrow{O A}, \overrightarrow{O B}$ or $8 \mathbf{i}$ $+\mathbf{j}-3 \mathbf{k}$.

Many students struggled to make progress in part (e) and part (f). Successful solutions almost always followed a good diagram of the situation and students need to be encouraged to set out
the given information in such a form before attempting to write up their solution.
In part (e), the area of a triangle $A P E$ was usually found using $x=\frac{1}{2} a b \sin C$.
with students using their answers to part (c) and part (d). Some students incorrectly assumed triangle APE was right-angled and applied the formula $\frac{1}{2}$ (base)(height). Part (f) was often not attempted. Students who formed an appropriate equation in λ also usually knew how to use their values of λ to find the coordinates of the two possible positions of E. Some errors were made with the algebraic solution of their equation in λ and some arithmetical errors were made in calculating the possible coordinates of E.

Q5.

The quality of the responses to this question was generally very good and showed that many students had a good understanding of Power, Energy and Work. (a) The majority of students wrote down correct equations for the motion of the car up and down the road. Most errors were due to sign confusion in the equation for the motion down the road - two separate diagrams were often the key to success here. Some students used the powers $3 P$ and P as their driving forces, but most students were able to use $P=F v$ correctly in their equations and go on to solve for P and R. A number of algebraic errors occurred in solving the simultaneous equations. Some students lost the final accuracy mark because they never expressed their final answers as exact multiples of g or to 2 or 3 significant figures.
(b) Most students tackled this part of the question successfully. The most common error in the work-energy equation was to account for work done against gravity in addition to the change in GPE, meaning that the equation contained an extra term. A few students omitted the work done against R or created a dimensionally incorrect expression by omitting the distance in their term for work done against R. The final accuracy mark was lost by some students for not rounding their final answer to 2 or 3 significant figures. A small number of students scored no marks, despite finding the correct distance, because they did not follow the instruction to "use the work-energy principle".

Q6.
(a) Students who adopted a standard structured approach to this question with masses and clear calculations of distances of centres of mass from named lines were generally more successful than students who went direct to forming an attempted moments equation. There were a surprising number of errors in finding the areas of the triangle and quarter circle. The formula was given for the position of the centre of mass of the sector, but some students preferred to work from the formula given in the formula booklet. Some students found the geometry of the triangle challenging and there were many errors in finding the position of its centre of mass. Most students worked from an axis through O and adjusted their answer to find the required distance. Those students who used $A D$ as their axis were more likely to make sign errors in their moments equation.
(b) Most students used their answer from part (a) correctly to find a relevant angle. Some students stopped at this point, but the majority went on to use a correct method to find the required angle. A clearly labelled diagram was very helpful here. Some students did not notice that the question asked for the answer to be given to the nearest degree.

Mark Scheme

Q1.

Question	Scheme	Marks
(a)	$R=\sqrt{5}$	B1
	$\tan \alpha=\frac{1}{2} \Rightarrow \alpha=26.57^{\circ}$	M1A1
(b)	$2 \quad 2$	
	$\frac{2 \cos \theta-\sin \theta-1}{}=15 \Rightarrow \frac{\sqrt{5} \cos \left(\theta+26.6^{\circ}\right)-1}{}=15$	
	$\begin{gathered} \Rightarrow \cos \left(\theta+26.6^{\circ}\right)=\frac{17}{15 \sqrt{5}}=(\text { awrt } 0.507) \\ \theta+26.57^{\circ}=59.54^{\circ} \end{gathered}$	M1A1
	$\Rightarrow \theta=\operatorname{awrt} 33.0^{\circ}$ or awrt 273.9°	A1
	$\theta+26.6^{\circ}=360^{\circ}$ - their ${ }^{\prime} 59.5^{\circ}$	dM1
	$\Rightarrow \theta=a w r t 273.9^{\circ}$ and awrt 33.0°	A1
(c)	θ - their $26.57^{\circ}=$ their $59.54^{\circ} \Rightarrow \theta=\ldots$	M1
	$\theta=\operatorname{awrt} 86.1^{\circ}$	A1
		$\left(10 \text { marks) }{ }^{(2)}\right.$

(a)

B1 $\quad R=\sqrt{5}$. Condone $R= \pm \sqrt{5}$ Ignore decimals
M1 $\tan \alpha= \pm \frac{1}{2}, \tan \alpha= \pm \frac{2}{1} \Rightarrow \alpha=\ldots$
If their value of R is used to find the value of α only accept $\cos \alpha= \pm \frac{2}{R}$ OR $\sin \alpha= \pm \frac{1}{R} \Rightarrow \alpha=\ldots$
A1 $\alpha=$ awrt 26.57°
(b)

M1 Attempts to use part (a) $\Rightarrow \cos \left(\theta \pm\right.$ their $\left.26.6^{\circ}\right)=K,|K|, 1$
A1 $\cos \left(\theta \pm\right.$ their $\left.26.6^{\circ}\right)=\frac{17}{15 \sqrt{5}}=($ awrt 0.507$)$. Can be implied by $\left(\theta \pm\right.$ their $\left.26.6^{\circ}\right)=$ awrt $59.5^{\circ} / 59.6^{\circ}$
A1 One solution correct, $\theta=$ awrt 33.0° or $\theta=$ awrt 273.9° Do not accept 33 for 33.0 .
$\mathrm{dM1}$ Obtains a second solution in the range. It is dependent upon having scored the previous M .
Usually for $\theta \pm$ their $26.6^{\circ}=360^{\circ}$ - their $59.5^{\circ} \Rightarrow \theta=\ldots$
A1 Both solutions $\theta=$ awrt 33.0° and awrt 273.9°. Do not accept 33 for 33.0 .
Extra solutions inside the range withhold this A1. Ignore solutions outside the range 0 , $\theta<360^{\circ}$
(c)

M1 $\quad \theta$ - their $26.57^{\circ}=$ their $59.54^{\circ} \Rightarrow \theta=\ldots$
Alternatively $-\theta+$ their $26.6^{\circ}=-$ their $59.5^{\circ} \Rightarrow \theta=\ldots$
If the candidate has an incorrect sign for α, for example they used $\cos \left(\theta-26.57^{\circ}\right)$ in part (b) it would be scored for $\theta+$ their $26.57^{\circ}=$ their $59.54^{\circ} \Rightarrow \theta=\ldots$
A1 awrt 86.1° ONLY. Allow both marks following a correct (a) and (b)
They can restart the question to achieve this result. Do not award if 86.1 was their smallest answer in (b). This occurs when they have $\cos \left(\theta-26.57^{\circ}\right)$ instead of $\cos \left(\theta+26.57^{\circ}\right)$ in (b)

Answers in radians: Withhold only one A mark, the first time a solution in radians appears

$$
\text { FYI (a) } \alpha=0.46 \text { (b) } \theta_{1}=\text { awrt } 0.58 \text { and } \theta_{2}=\operatorname{awrt} 4.78 \text { (c) } \theta_{3}=\text { awrt } 1.50 \text {. Require } 2 \mathrm{dp} \text { accuracy }
$$

(b)	$20=60 \mathrm{e}^{-\frac{5}{2} t}$ or $\ln 20=-\frac{5}{2} t+\ln 60$		titutes $x=20$ into an equation in the form ither $x= \pm \lambda \mathrm{e}^{ \pm \mu t} \pm \beta$ or $x= \pm \lambda \mathrm{e}^{ \pm \mu \mu \pm \alpha \ln \delta x}$ $\pm \alpha \ln \delta x= \pm \mu t \pm \beta$ or $t= \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0	M1
	$\begin{aligned} & t=-\frac{2}{5} \ln \left(\frac{20}{60}\right) \\ & \{=0.4394449 \ldots \text { (days) }\} \end{aligned}$ Note: t must be greater than 0	dependent on the previous M mark Uses correct algebra to achieve an equation of the form of either $t=A \ln \left(\frac{50}{20}\right)$ or $A \ln \left(\frac{20}{60}\right)$ or $A \ln 3$ or $A \ln \left(\frac{1}{3}\right)$ o.e. or $t=A(\ln 20-\ln 60)$ or $A(\ln 60-\ln 20)$ o.e. $(A \in \square, t>0)$		dM1
	$\Rightarrow t=632.8006 \ldots=633$ (to the nearest minute)		awrt 633 or 10 hours and awrt 33 minutes	A1 cso
	Note: dM1 can be implied by $t=$ awrt 0.44 from no incorrect working.			
	Note. dMr can be implied by $t=$ awt 0.44 from in incorrect working.			

Question Number	Scheme	Notes	Marks
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-\frac{5}{2} x, \quad x \in \mathbb{R}, x \geqslant 0$		
(a) Way 4	$\int \frac{2}{5 x} \mathrm{~d} x=-\int \mathrm{d} t \quad \mathrm{~S}$	Separates variables as shown. $\mathrm{d} x$ and $\mathrm{d} t$ should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
		Integrates both sides to give either $\pm \alpha \ln (p x)$ or $\pm k \rightarrow \pm k t$ (with respect to t); $k, \alpha \neq 0 ; p>0$	M1
		$\frac{2}{5} \ln (5 x)=-t+c$, including " $+c$ "	A1
	$\begin{aligned} & \{t=0, x=60 \Rightarrow\} \frac{2}{5} \ln 300=c \\ & \frac{2}{5} \ln (5 x)=-t+\frac{2}{5} \ln 300 \Rightarrow x=60 \mathrm{e}^{-\frac{5}{2}} \\ & x=\frac{60}{\mathrm{e}^{\frac{5}{2}}} \end{aligned}$	Finds their c and uses correct algebra to achieve $x=60 \mathrm{e}^{\frac{-5}{\frac{2}{2}^{\prime}}}$ or $x=\frac{60}{\mathrm{e}^{\frac{t^{\prime}}{2}}}$ with no incorrect working seen	A1 cso
			[4]
(a) Way 5	$\left\{\frac{\mathrm{d} t}{\mathrm{~d} x}=-\frac{2}{5 x} \Rightarrow\right\} \quad t=\int_{60}^{x}-\frac{2}{5 x} \mathrm{~d} x$	Ignore limits	B1
	$=\left[-\frac{2}{\ln } x\right]^{x}$	Integrates both sides to give either $\pm k \rightarrow \pm k t$ (with respect to t) or $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x ; k, \alpha \neq 0$	M1
		$t=\left[-\frac{2}{5} \ln x\right]_{60}^{x}$ including the correct limits	A1
	$\begin{aligned} & t=-\frac{2}{5} \ln x+\frac{2}{5} \ln 60 \Rightarrow-\frac{5}{2} t=\ln x-\ln 60 \\ & \Rightarrow x=60 \mathrm{e}^{-\frac{5}{2}} \text { or } x=\frac{60}{\mathrm{e}^{\frac{3^{2} t}{2}}} \end{aligned}$	Correct algebra leading to a correct result	A1 cso
			[4]

	Question Notes			
(a)	B1	For the correct separation of variables. E.g. $\int \frac{1}{5 x} \mathrm{~d} x=\int-\frac{1}{2} \mathrm{~d} t$		
	Note	B1 can be implied by seeing either $\ln x=-\frac{5}{2} t+c$ or $t=-\frac{2}{5} \ln x+c$ with or without $+c$		
	B1 can also be implied by seeing $[\ln x]_{60}^{x}=\left[-\frac{5}{2} t\right]_{0}^{t}$			

$\left.\begin{array}{|l|l|r|l|}\hline \begin{array}{l}\text { (c) } \\ \text { Way 2 }\end{array} & \mathrm{I}=x^{2}(x \ln x-x)-\int 2 x(x \ln x-x) \mathrm{d} x & \left\{\begin{array}{ll}u=x^{2} & \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x \\ \frac{\mathrm{~d} v}{\mathrm{~d} x}=\ln x & \Rightarrow \\ v=x \ln x-x\end{array}\right\}\end{array}\right\}$

	Question Notes	
(a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.
(b)	B1	Outside brackets $\frac{1}{2} \times(0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.
	$\begin{gathered} \text { Ml } \\ \text { Note } \end{gathered}$	For structure of trapezium rule $[\ldots \ldots \ldots \ldots .$. No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y ordinate].
	$\begin{gathered} \hline \text { Al } \\ \text { Note } \end{gathered}$	anything that rounds to 1.083 Working must be seen to demonstrate the use of the trapezium rule. (Actual area is $1.070614704 \ldots$)
	Note	Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726)+\frac{1}{5}(0.2625+$ their $0.6595+1.2032+1.9044)=$ awrt 1.083
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly Award B1M0A0 for $\frac{1}{2}(0.2)+2(0.2625+$ their $0.6595+1.2032+1.9044)+2.7726$ (answer of 10.9318) Award B1M0A0 for $\frac{1}{2}(0.2)(2.7726)+2(0.2625+$ their $0.6595+1.2032+1.9044) \quad$ (answer of 8.33646)	
	Alternative method: Adding individual trapezia	
	$\text { Area } \approx 0.2 \times\left[\frac{0+0.2625}{2}+\frac{0.2625+" 0.6595 "}{2}+\frac{" 0.6595^{"}+1.2032}{2}+\frac{1.2032+1.9044}{2}+\frac{1.9044+2.7726}{2}\right]=1.08318 \ldots$	
	B1	0.2 and a divisor of 2 on all terms inside brackets
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2
	Al	anything that rounds to 1.083
(c)	A1 Note Note	Exact answer needs to be a two term expression in the form $a \ln b+c$ Give A1 e.g. $\frac{8}{3} \ln 2-\frac{7}{9}$ or $\frac{1}{9}(24 \ln 2-7)$ or $\frac{4}{3} \ln 4-\frac{7}{9}$ or $\frac{1}{3} \ln 256-\frac{7}{9}$ or $-\frac{7}{9}+\frac{8}{3} \ln 2$ or $\ln 2^{\frac{8}{3}}-\frac{7}{9}$ or equivalent. Give final A0 for a final answer of $\frac{8 \ln 2-\ln 1}{3}-\frac{7}{9}$ or $\frac{8 \ln 2}{3}-\frac{1}{3} \ln 1-\frac{7}{9}$ or $\frac{8 \ln 2}{3}-\frac{8}{9}+\frac{1}{9}$ or $\frac{8}{3} \ln 2-\frac{7}{9}+c$
	Note	$\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2}$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM 0 A 0 for $\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2} \rightarrow\left(\frac{8}{3} \ln 2-\frac{8}{9}\right)-\frac{1}{9} \quad$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9}\right]_{1}^{2} \rightarrow\left(\frac{8}{3} \ln 2-\frac{8}{9}\right)-\left(0+\frac{1}{9}\right)$
	SC	A candidate who uses $u=\ln x$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{2}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{\alpha}{x}, v=\beta x^{3}$, writes down the correct "by parts" formula but makes only one error when applying it can be awarded Special Case $1^{\text {st }} \mathrm{M} 1$.

(e)	$\{$ Area $A P E=\} \frac{1}{2}$ (their $\left.2 \sqrt{2}\right)^{2} \sin \theta \quad \frac{1}{2}$ (til	$\frac{1}{2}$ (their $\left.2 \sqrt{2}\right)^{2} \sin \theta$ or $\frac{1}{2}$ (their $\left.2 \sqrt{2}\right)^{2} \sin ($ their θ)	M1
	$=2.4$	2.4 or $\frac{12}{5}$ or $\frac{24}{10}$ or awrt 2.40	A1
			[2]
(f)	$\overrightarrow{P E}=(-5 \lambda) \mathbf{i}+(4 \lambda) \mathbf{j}+(3 \lambda) \mathbf{k}$ and $P E=$ their $2 \sqrt{2}$ from part (c)		
	$\left\{P E^{2}=\right\}(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}=(\text { their } 2 \sqrt{2})^{2}$	This mark can be implied.	M1
	$\left\{\Rightarrow 50 \lambda^{2}=8 \Rightarrow \lambda^{2}=\frac{4}{25} \Rightarrow\right\} \lambda= \pm \frac{2}{5}$	Either $\lambda=\frac{2}{5}$ or $\lambda=-\frac{2}{5}$	A1
	$L_{2}: \mathbf{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right) \pm \frac{2}{5}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$	dependent on the previous M mark Substitutes at least one of their values of λ into l_{2}.	dM1
	$\{\overline{O E}\}=\left(\begin{array}{c}3 \\ \frac{17}{5} \\ \frac{4}{5}\end{array}\right)$ or $\left(\begin{array}{c}3 \\ 3.4 \\ 0.8\end{array}\right),\{\overline{O E}\}=\left(\begin{array}{c}-1 \\ \frac{33}{5} \\ \frac{16}{5}\end{array}\right)$ or $\left(\begin{array}{c}-1 \\ 6.6 \\ 3.2\end{array}\right)$	At least one set of coordinates are correct.	A1
		Both sets of coordinates are correct.	A1
			[5]
			15

(a)	Question Notes			
	B1	Allow $A(3,5,0)$ or $3 \mathbf{i}+5 \mathbf{j}$ or $3 \mathbf{i}+5 \mathbf{j}+0 \mathbf{k}$ or $\left(\begin{array}{l}3 \\ 5 \\ 0\end{array}\right)$ or benefit of the doubt $\begin{aligned} & 3 \\ & 5 \\ & 0\end{aligned}$		
(b)	Al	Correct vector equation using $\mathrm{r}=$ or $l=$ or $l_{2}=$ or Line $2=$ i.e. Writing $\mathbf{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)+\lambda\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$ or $\mathrm{r}=\left(\begin{array}{l}1 \\ 5 \\ 2\end{array}\right)+\lambda \mathbf{d}$, where dis a multiple of $\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$.		
	Note	Allow the use of parameters μ or t instead of λ.		
(c)	M1	Finds the difference between $\overline{O P}$ and their $\overline{O A}$ and applies Pythagoras to the result to find $A P$		
	Note	Allow M1A1 for $\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$ leading to $A P=\sqrt{(2)^{2}+(0)^{2}+(2)^{2}}=\sqrt{8}=2 \sqrt{2}$.		
(d)	Note	For both the M1 and dM1 marks $\overline{A P}$ (or $\overline{P A}$) must be the vector used in part (c) or the difference $\overrightarrow{O P}$ and their $\overrightarrow{O A}$ from part (a).		
	Note	Applying the dot product formula correctly without $\cos \theta$ as the subject is fine for M1dM1		
	Note	Evaluating the dot product (i.e. $(-2)(-5)+(0)(4)+(2)(3)$) is not required for M1 and dM1 marks.		
	Note	In part (d) allow one slip in writing $\overrightarrow{A P}$ and \mathbf{d}_{2}		
	Note	$\cos \theta=\frac{-10+0-6}{\sqrt{8} \cdot \sqrt{50}}=-\frac{4}{5}$ followed by $\cos \theta=\frac{4}{5}$ is fine for A1 cso		
	Note	Give M1dM1A1 for $\{\cos \theta=\}=\frac{\left(\begin{array}{r}-2 \\ 0 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-10 \\ 8 \\ 6\end{array}\right)}{\sqrt{8} \cdot 10 \sqrt{2}}=\frac{20+12}{40}=\frac{4}{5}$		
	Note	Allow final A 1 (ignore subsequent working) for $\cos \theta=0.8$ followed by $36.869 \ldots$:		
	Alternative Method: Vector Cross Product			
	Only apply this scheme if it is clear that a candidate is applying a vector cross product method.			
	$\overrightarrow{A P} \times \mathbf{d}_{2}=\left(\begin{array}{r} -2 \\ 0 \\ 2 \end{array}\right) \times\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left\{\left\|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{array}\right\|=-8 \mathbf{i}-4 \mathbf{j}-8 \mathbf{k}\right\}$		Realisation that the vector cross product is required between their $(\overline{A P}$ or $\overline{P A})$ and $\pm K \mathrm{~d}_{2}$ or $\pm K \mathrm{~d}_{1}$	M1
	$\sin \theta=\frac{\sqrt{(-8)^{2}+(-4)^{2}+(-8)^{2}}}{\sqrt{(-2)^{2}+(0)^{2}+(2)^{2}} \cdot \sqrt{(-5)^{2}+(4)^{2}+(3)^{2}}}$		Applies the vector product formula between their $(\overline{A P}$ or $\overline{P A})$ and $\pm K \mathrm{~d}_{2}$ or $\pm K \mathrm{~d}_{1}$	dM1
		$\sin \theta=\frac{12}{\sqrt{8} \cdot \sqrt{50}}=\frac{3}{5} \Rightarrow \cos \theta=\frac{4}{5}$	$\cos \theta=\frac{4}{5}$ or 0.8 or $\frac{8}{10}$ or $\frac{16}{20}$	A1
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2 \sqrt{2})^{2} \sin \left(36.869 \ldots .{ }^{\circ}\right)$ or $\frac{1}{2}(2 \sqrt{2})^{2} \sin \left(180^{\circ}-36.869 \ldots .^{\circ}\right)$; $=$ awrt 2.40		
	Note	Candidates must use their θ from part (d) or apply a correct method of finding their $\sin \theta=\frac{3}{5}$ from their $\cos \theta=\frac{4}{5}$		

(f)	Question Notes Continued		
	Note	Allow the first M1A1 for deducing $\lambda=\frac{2}{5}$ or $\lambda=-\frac{2}{5}$ from no incorrect working	
	SC	Allow special case $1^{\text {st }} \mathrm{M} 1$ for $\lambda=2.5$ from comparing lengths or from no working	
	Note	Give $1^{\text {st }} \mathrm{M} 1$ for $\sqrt{(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}}=($ their $2 \sqrt{2}$)	
	Note	Give $1^{\text {st }} \mathrm{M} 0$ for $(-5 \lambda)^{2}+(4 \lambda)^{2}+(3 \lambda)^{2}=($ their $2 \sqrt{2})$ or equivalent	
	Note	Give $1^{\text {st }} \mathrm{M} 1$ for $\lambda=\frac{\text { their } A P=2 \sqrt{2}}{\sqrt{(-5)^{2}+(4)^{2}+(3)^{2}}}$ and $1^{\text {st }} \mathrm{A} 1$ for $\lambda=\frac{2 \sqrt{2}}{5 \sqrt{2}}$	
	Note	So $\left\{\hat{\mathbf{d}}_{1}=\frac{1}{5 \sqrt{2}}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right) \Rightarrow\right.$ "vector" $=\frac{2 \sqrt{2}}{5 \sqrt{2}}\left(\begin{array}{r}-5 \\ 4 \\ 3\end{array}\right)$ is M1A1	
	Note	The $2^{\text {nd }} \mathrm{dM} 1$ in part (f) can be implied for at least 2 (out of 6) correct x, y, z ordinates from their values of λ.	
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.	
	CAREFUL	Putting l_{2} equal to A gives $\left(\begin{array}{l} 1 \\ 5 \\ 2 \end{array}\right)+\lambda\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{l} 3 \\ 5 \\ 0 \end{array}\right) \rightarrow\left(\begin{array}{c} \lambda=\frac{2}{5} \\ \lambda=0 \\ \lambda=-\frac{2}{3} \end{array}\right)$	using $\lambda=\frac{\text { Give M0 }}{} \begin{array}{r}\text { dM0 for finding and } \\ 5\end{array}$
	CAREFUL	Putting $\lambda \mathrm{d}_{2}=\overrightarrow{A P}$ gives $\lambda\left(\begin{array}{r} -5 \\ 4 \\ 3 \end{array}\right)=\left(\begin{array}{c} 2 \\ 0 \\ -2 \end{array}\right) \rightarrow\left(\begin{array}{c} \lambda=-\frac{2}{5} \\ \lambda=0 \\ \lambda=-\frac{2}{3} \end{array}\right)$	Give M0 dM0 for finding and using $\lambda=-\frac{2}{5}$ from this incorrect method.
	General	You can follow through the part (c) answer of their $A P=2 \sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1	
	General	You can follow through their \mathbf{d}_{2} in part (b) for (d) M1dM1, (f) M1dM1.	

Q5.

Q	Scheme	Marks	Notes
a		M1	Equation of motion up or down the road. Requires all 3 terms. Condone sign errors and trig confusion. Must be dimensionally correct.
	$F=m g \sin \theta+R \quad(F=R+392)$	A1	Correct equation up the road
	$G+m g \sin \theta=R \quad(G=R-392)$	A1	Correct equation down the road
	$\begin{aligned} & F=\frac{3 P}{12.5} \text { or } G=\frac{P}{12.5} \\ & \Rightarrow \frac{3 P}{12.5}=392+R \text { or } \frac{P}{12.5}=R-392 \end{aligned}$	B1	Use of $F=\frac{P}{v}$ at least once
	$\frac{2 P}{12.5}=2 \times 392,2 R=\frac{4 P}{12.5}$	M1	Solve simultaneous equations for P or R, provided $F \neq G$ and P and $3 P$ used correctly
	$P=4900(500 \mathrm{~g}), \quad R=784(80 \mathrm{~g})$	A1	CSO. Both values correct. Accept $2 \mathrm{sf}, 3 \mathrm{sf}$ or an exact multiple of g
		(6)	
b	Must be using work-energy.		
	KE lost $=\mathrm{PE}$ gained +WD against R	M1	Equation needs all 3 terms and no extras. Condone sign errors.
	$\begin{aligned} & \frac{1}{2} \times 800 \times 12.5^{2} \\ & \quad=800 \times 9.8 \times \frac{d}{20}+(\text { their } R) \times d \end{aligned}$	A1	At most 1 error. Allow with R (with trig. substituted) $(62500=392 d+R d)$
		Alft	Correct equation in their R (with trig. substituted)
	$d=\frac{62500}{1176}=53.1(\mathrm{~m})$	A1	CSO. Accept 53(m)
		(4)	
		[10]	

Q6.

b			
	$\tan \theta=\frac{\text { their } 0.830}{2.12} \text { or } \tan \phi=\frac{2.12}{\text { their } 0.830}$	M1	Use of tan to find a relevant angle:
	21.4° or 68.6°	A1	
	Angle between DC and downward vertical $=135^{\circ}$ - their θ	M1	Correct method for the required angle
	$=114^{\circ}$	A1	The Q asks for the angle to the nearest degree.
		(4)	
balt	$\begin{aligned} & G D^{2}=O D^{2}+O G^{2}-2 O D . O C \cos 45 \\ & (G D=2.28) \quad \frac{\sin 45}{D G}=\frac{\sin \theta}{O G} \end{aligned}$	M1	Complete method to find angle $O D G$
	$\Rightarrow \theta=66.4^{\circ}$	A1	
		M1	Correct method for the required angle
	Required angle $=180-66.4=114^{\circ}$	A1	The Q asks for the angle to the nearest degree.
		(4)	
		[9]	

