A2 Double (Further) Maths

Further Pure 1 (FP1)
Learning Pack

Name

Week beginning	Lesson		Chapter	Topic	Page
27/4		Core	9	Vectors	1,2
4/5		Core	9	Vectors	3,4,5
11/5		Core	9	Vectors	
18/5			4	Inequalities	
25/5	Half term				
1/6	Progression leave				
8/6			5	t-formula	
17/6-1/7					
8/7			2	Conics 1: parabolas, hyperbolas	8,9
15/7			2	Conics 1: tangents, normal, loci	10
	Summer holiday				
7/9					
14/9			2	Conics 1	11
21/9		Core	9	Consolidation: Vectors	12
28/9				Cons. t-formula inequalities	13,14
5/10					
12/10			7	Weierstrass substitution	15
19/10					
26/10	Half term				
2/11					
9/11	Study leave?				
16/11			3	Conics 2	16
			3	Conics 2	17
23/11			3	Conics 2	18
			3	Conics 2	19
			6	Taylor series	20
30/11				Taylor series solution to DE	21
7-14/12					
	Christmas				
4/1					
11/1			1	FP1 Vectors	22
18/1			1	FP1 Vectors	24
25/1			9	First ODE's using substitution	25
1/2			9	Second ODE's using substitution	26
8/2	mocks				
15/2	Half term				
22/2-1/3					
8/3			8	Simpson's rule	27
			8	Euler's method	28
			8	Midpoint method	29
			8	Euler for $2^{\text {nd }}$ order DE's	30
15/3			7	L'Hôpital's rule	31
			7	Leibnitz' theorem	32

Vectors：Equation of a line	
Vector equation of a line	https：／／www．youtube．com／watch？ $\mathrm{v}=$ r24zBidwago
Cartesian equation of a line	https：／／www．youtube．com／watch？v＝puVoOw3hNGY
Vector equation of a plane	https：／／www．youtube．com／watch？v＝T76x5B9rf5g \square \square浆教 ？ 3 \square cole \square

1）What is the vector equation of a line between two points A and B
2）What is the vector equation of a line that goes through point A and is parallel to vector \boldsymbol{b}
The following are points

$$
A=(3,1,2)
$$

$$
\begin{gathered}
B=(-1,2,-1) \\
C=(2,-1,3)
\end{gathered}
$$

3）Find a vector equation of the line that goes through point A and B
4）Find a Cartesian equation of the line that goes through point A and B
5）Find a vector equation of a plane that contains the points A, B and C
（ans $r=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-4 \\ 1 \\ -3\end{array}\right), \frac{x-3}{-4}=\frac{y-1}{1}=\frac{z-2}{-3}, r=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-4 \\ 1 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$

Vectors:	
Dot Product	https://www.youtube.com/watch?v=5XVFQix8tAk

What are the two formulas for $\boldsymbol{a} \cdot \boldsymbol{b}$
The following are vectors

$$
\begin{array}{ll}
\boldsymbol{a}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) & \boldsymbol{b}=\left(\begin{array}{c}
0 \\
-2 \\
3
\end{array}\right) \\
\boldsymbol{c}=\left(\begin{array}{c}
-1 \\
3 \\
4
\end{array}\right) & \boldsymbol{d}=\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)
\end{array}
$$

1) Evaluate
a. $\boldsymbol{a} \cdot \boldsymbol{b}$
b. $\boldsymbol{c} \cdot \boldsymbol{b}$
c. $\boldsymbol{d} \cdot \boldsymbol{a}$
d. $\boldsymbol{b} \cdot \boldsymbol{d}$
2) Find an angle between the vectors \boldsymbol{a} and \boldsymbol{b}
3)

The lines l_{1} and l_{2} have vector equations $\mathbf{r}=(2 \mathbf{i}+\mathbf{j}+\mathbf{k})+t(3 \mathbf{i}-8 \mathbf{j}-\mathbf{k})$ and $\mathbf{r}=(7 \mathbf{i}+4 \mathbf{j}+\mathbf{k})+s(2 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k})$ respectively.
Given that l_{1} and l_{2} intersect, find the size of the acute angle between the lines to one decimal place.
(Ans? -2, 6, 0, 1, 104.36 or $75.63,68.5$)

Vectors：	
Equation of a plane in scalar from	https：／／www．youtube．com／watch？v＝aGZY6I9Rr5A \square 4号回 4） An？
Angles between lines and planes	https：／／www．youtube．com／watch？v＝wtpwM2y86So \square 美 形 百始定
Angles between two planes	https：／／www．youtube．com／watch？v＝2LNhYZBPkDE \square 它品 － 5 5

The following are points

$$
A=(3,1,2)
$$

$$
\begin{gathered}
B=(-1,2,-1) \\
C=(-1,1,2)
\end{gathered}
$$

1）Given that C is perpendicular to the plane Π and that the plane Π contains the points A and B ．Find the scalar equation of the plane Π ．
2）Find the Cartesian equation of the plane Π ．
3）
Find the acute angle between the line l with equation $\mathbf{r}=2 \mathbf{i}+\mathbf{j}-5 \mathbf{k}+\lambda(3 \mathbf{i}+4 \mathbf{j}-12 \mathbf{k})$ and the plane with equation $\mathbf{r} .(2 \mathbf{i}-2 \mathbf{j}-\mathbf{k})=2$ ．
4）
Find the acute angle between the planes with equations $\mathbf{r} .(4 \mathbf{i}+4 \mathbf{j}-7 \mathbf{k})=13$ and $\mathbf{r} .(7 \mathbf{i}-4 \mathbf{j}+4 \mathbf{k})=6$ respectively．
（ans？$r .\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)=1,-x+y+2 z=1,14.9^{\circ}, 78.6^{\circ}$

Vectors：	
Points of intersection of lines	https：／／www．youtube．com／watch？v＝U9NfRbvyZZM \square
Points of intersection of line and plane	https：／／www．youtube．com／watch？v＝5vqzZCp1R M

1）
The lines l_{1} and l_{2} have vector equations
$\mathbf{r}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}-\mathbf{k})$ and $\mathbf{r}=-2 \mathbf{j}+3 \mathbf{k}+\mu(-5 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$ respectively．
Show that the two lines intersect，and find the position vector of the point of intersection．
2）D
Find the coordinates of the point of intersection of the line l and the plane Π where l has equation $\mathbf{r}=\mathbf{- i}+\mathbf{j}-5 \mathbf{k}+\lambda(\mathbf{i}+\mathbf{j}+2 \mathbf{k})$ and Π has equation $\mathbf{r} .(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})=4$ ．
（Ans，（5，－3，－1），（1，3，－1）

Vectors：	
Shortest distance between a point and a plane	
Shortest distance between a point and a line	https：／／www．youtube．com／watch？v＝ZbcZTpdOVBI 回緛回
Shortest distance between skew lines using the scalar product	https：／／www．youtube．com／watch？v＝HC5YikQxwZA 品號 \square Trysis \square

The equation given in the formula book for the shortest distance between a point and a plane is given as

The perpendicular distance from the point with coordinates (α, β, γ) to the plane
with equation $a x+b y+c z=d$ is

$$
\frac{|a \alpha+b \beta+c \gamma-d|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

1）
Find the perpendicular distance from the point with coordinates $(3,2,-1)$ to the plane with equation $2 x-3 y+z=5$ ．

2）
The line l has equation $\frac{x-1}{2}=\frac{y-1}{-2}=\frac{z+3}{-1}$ ，and the point A has coordinates $(1,2,-1)$ ．
a Find the shortest distance between A and l ．
3）
The lines l_{1} and l_{2} have equations $\mathbf{r}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-1 \\ 3 \\ -1\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$ respectively， where λ and μ are scalars．
Find the shortest distance between these two lines．
（ans $\frac{6}{\sqrt{14}}, \frac{\sqrt{29}}{3}, 2 \sqrt{2}$ ）

Inequalities

	https://www.youtube.com/watch?v=r3tYTA4H61A

Question 3 (**)
Find the set of values of x that satisfy the inequality

$$
\frac{5 x}{x^{2}+4}<x
$$

$-1<x<0, x>1$

The t formula	
Derivation	https：／／www．youtube．com／watch？v＝jsAVMhmsFco \square为分回 4） $\sqrt{2}$
Using t substitution	https：／／www．youtube．com／watch？v＝6 QqFUwKwyk \square里回 \square回：4RE

Using the substitution $t=\tan \frac{\theta}{2}$ ，prove that

$$
\tan ^{2} \theta+\tan \theta \sec \theta+1 \equiv \frac{1+\sin \theta}{\cos ^{2} \theta}
$$

Conics: Parabola	
Cartesian and parametric equations of a parabola	
Focus and directrix properties of a parabola	https://youtu.be/S QIz8Xke4s \square 82 \square \square r 4-5 - \square

1) What is the Cartesian equation of a parabola
2) What are the parametric equations of a parabola
3) What is defined to be the focus of a parabola?
4) What is defined to be the directrix of a parabola?
5) G

Find an equation of the parabola with:
a focus $(7,0)$ and directrix $x+7=0$
6) F

Find the coordinates of the focus and an equation for the directrix of a parabola with equation:
a $y^{2}=24 x$
(ans $y^{2}=28 x,(6,0) x+6=0$

Conics: Rectangular Hyperbola	
Cartesian and Parametric equations of a rectangular	https://youtu.be/xmEQY7RfNdg
hyperbola	

1) What is the Cartesian equation of the rectangular hyperbola?
2) What are the parametric equations of the rectangular hyperbola?
3) What are the equations of the asymptotes of the rectangular hyperbola?

4)

The point P with coordinates $(75,30)$ lies on the parabola C with equation $y^{2}=12 x$.
Find the equation of the tangent to C at P, giving your answer in the form $y=m x+c$, where m and c are constants.
(ans, $y=\frac{x}{5}+15$,)

Conics:
 Consolidation

1 The ellipse E has parametric equations $x=4 \cos \theta, y=9 \sin \theta$.
a Find a Cartesian equation of the ellipse.
b Sketch the ellipse, labelling any points of intersection with the coordinate axes.
c Find the equation of the normal to the ellipse at $P(4 \cos \theta, 9 \sin \theta)$.

1 a $\frac{x^{2}}{16}+\frac{y^{2}}{81}=1$
b

c $4 x \sin \theta-9 y \cos \theta=-65 \cos \theta \sin \theta$

Vectors	
Consolidation	

The plane Π has equation $-2 x+y+z=5$. The point P has coordinates $(1,0,3)$.
a Find the shortest distance between P and Π.
The point Q is the reflection of the point P in Π.
b Find the coordinates of point Q.
a $\frac{2 \sqrt{6}}{3}$
b $Q\left(-\frac{5}{3}, \frac{4}{3}, \frac{13}{3}\right)$

The t formula	
Consolidation	

3 Using the substitution $t=\tan \frac{\theta}{2}$, prove that $\sin \theta+\sin \theta \cot ^{2} \theta \equiv \operatorname{cosec} \theta$ for $\theta \neq n \pi, n \in \mathbb{Z}$
(4 marks)

| Inequalities |
| :--- | :--- |
| Consolidation |

7 Solve $\frac{4 x}{|x|+2}<x$

Ans.

		Weierstrass substitution "The sneakiest substitution in mathematics"	

Use the Weierstrass substitution to show that

$$
\int \sin \theta d \theta=-\cos \theta
$$

Karl Weierstrass

		Conics 2 https://en.wikipedia.org/wiki/Ellipse https://en.wikipedia.org/wiki/Hyperbola	

1) What is the standard Cartesian equation for an ellipse?
2) What are the standard parametric equations for an ellipse?
3) What is the standard Cartesian equation for a hyperbola?
4) What are the parametric equations for a hyperbola?
5) Find the equation of the tangent to the ellipse with equation

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

At the point $P(3 \cos t, 2 \sin t)$
(Ans 5) $3 y \sin t+2 x \cos t$)

| | Conics 2 | |
| :--- | :--- | :--- | :--- |

An ellipse has Cartesian equation

$$
2 x^{2}+3 y^{2}-4 x+12 y+8=0
$$

Determine ...
a) \ldots the coordinates of the centre of the ellipse.
b) ... the eccentricity of the ellipse.
c) \ldots the coordinates of the foci of the ellipse.
d) \ldots the equations of the directrices of the ellipse.

$$
(1,-2), e=\frac{\sqrt{3}}{3},(0,-2),(2,-2), x=-2, x=4
$$

| | Conics 2 | |
| :--- | :--- | :--- | :--- |

Question 13 (***+)
An ellipse has equation

$$
x^{2}-8 x+4 y^{2}+12=0
$$

a) Determine the coordinates of the foci and the equations of the directrices of the ellipse.

A straight line with positive gradient passes through the origin O and touches the ellipse at the point A.
b) Find the coordinates of A.

$$
(4-\sqrt{3}, 0),(4+\sqrt{3}, 0), x=4-\frac{4}{3} \sqrt{3}, x=4+\frac{4}{3} \sqrt{3}
$$

		Conics 2	

Question 7 (***)
An ellipse E has Cartesian equation

$$
\frac{x^{2}}{289}+\frac{y^{2}}{64}=1 .
$$

a) Find the coordinates of the foci of E, and the equations of its directrices.
b) Sketch the ellipse.

The point P lies on E so that $P S$ is vertical, where S is the focus of the ellipse with positive x coordinate.
c) Show that the tangent to the ellipse at the point P meets one the directrices of the ellipse on the x axis.

$$
(\pm 15,0), \quad x= \pm \frac{289}{15}
$$

$$
y=\frac{1}{\sqrt{x}}, x>0
$$

a) Find the first four terms in the Taylor expansion of y about $x=1$.
b) Use the first three terms of the expansion with $x=\frac{8}{9}$ to show $\sqrt{2} \approx \frac{229}{162}$.

$$
y=1-\frac{1}{2}(x-1)+\frac{3}{8}(x-1)^{2}-\frac{5}{16}(x-1)^{3}+O\left((x-1)^{4}\right)
$$

	Taylor series solution to ODE's https://www.youtube.com/watch?v=Ky5fWBOOHa4	

A curve has an equation $y=f(x)$ that satisfies the differential equation

$$
\frac{d y}{d x}=x^{2}-y^{2},
$$

subject to the condition $x=0, y=2$.

Find the first four terms in the expansion of $y=f(x)$ in powers of x.

$$
y=2-4 x+8 x^{2}-\frac{47}{3} x^{3}+O\left(x^{4}\right)
$$

FP1 Vectors	
Vector product -	https://www.youtube.com/watch?v=2wTUqZa66ng
Mod of cross product -	https://www.youtube.com/watch?v=3tEdru2rwul
Area of a triangle-	https://www.youtube.com/watch?v=IHRY5DgGdBI
Area of a parallelogram -	https://www.youtube.com/watch?v=CDOMXPhRkvQ
Volume of a tetrahedron -	https://www.youtube.com/watch?v=RVDmjbuFEUo
Volume of a parallelepiped -	https://www.youtube.com/watch?v=qpsFTTAu15M

1) Given $a=2 i-3 j$ and $b=4 i+j-k$ find $a \times b$

Verify that $a \times b$ is perpendicular to both a and b
2) Find the sine of the acute angle between the vectors $a=2 i+j+2 k$ and $b=-3 j+4 k$
3) Find the area of triangle $O A B$, where o is the origin. A is the point with positon vector $i-j$ and B is the point with position vector $3 i+4 j-6 k$
4) Find the area of the parallelogram $A B C D$, where the position vectors of A, B and D are $2 i+j-k, 6 i+4 j-3 k$ and $14 i+7 j-6 k$ respectively.
5) Find the volume of a tetrahedron which has vertices at $(1,1,-1),(2,4,-1),(3,0,-2)$ and $(0,4,5)$
6) Find the volume of the parallelepiped $A B C D E F G H$ where the vertices A, B, D and E have coordinates $(0,0,0),(3,0,1),(1,2,0)$ and $(1,1,3)$
(Ans 1) $31+2 j+14 k$ 2) $\left.\frac{2 \sqrt{2}}{3} 3\right) \frac{\sqrt{121}}{2}$ 4) 13 5) 6 6)17)

	FP1 Vectors Vector product equation of a straight line - https://www.youtube.com/watch? $=$ krc4m	

1) Find the vector equation of the line through the points (1,2, -1) and ($3,-2,2$) in the form $(r-1) \times b=0$
2)

a. Find, in the form $r . n=p$, an equation of the plane which contains the line l and the point with position vector a where l has equation $r=3 i+5 j-2 k+$ $\lambda(-i+2 j-k)$ and $a=4 i+3 j+k$
b. Give the equation of the plane in Cartesian form
(Ans2) $r .(4 i+2 j)=22)$

a) Use the substitution $u=y-x$ to transform the differential equation $\frac{d y}{d x}=\frac{y-x+2}{y-x+3}$ into a differential equation in u and x
b) By first solving this new equation, show that the general solution to the original equation, show that the general solution to the original equation may be written in the form

$$
(y-x)^{2}+6 y-4 x-2 c=0
$$

Where c is an arbitrary constant.
(Ans)

| | ODE Substitution | |
| :--- | :--- | :--- | :--- |

The differential equation

$$
x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=3 x, x \neq 0,
$$

is to be solved subject to the boundary conditions $y=\frac{3}{2}, \frac{d y}{d x}=\frac{1}{2}$ at $x=1$.
a) Show that the substitution $v=\frac{d y}{d x}$, transforms the above differential equation into

$$
\frac{d v}{d x}+\frac{2 v}{x}=3 .
$$

b) Hence find the solution of the original differential equation, giving the answer in the form $y=f(x)$.

$$
y=\frac{1}{2}\left(x^{2}+\frac{1}{x}+1\right)
$$

	Simpson's rule https://www.youtube.com/watch?v=ns3k- Lz7qWU	

Simpson's rule is used to find the approximate area under a graph. Since integration between two limits also gives the area under a graph then Simpson's rule can often be used as a way of finding an approximate value of a definite integral. It is an improvement on the trapezium rule as it uses a parabola rather than a straight line between intervals as an approximation to the curve.
(i)

> Use Simpson's rule with 4 intervals to estimate $$
\int_{2}^{4} \frac{\ln x}{x} \mathrm{~d} x
$$

(ii) Find the exact value of this integral
(iii) Hence the relative error in \%: $\frac{\cdots \cdots-0.7207}{0.7207} \times 100 \%$

| | Euler's method for numerically solving $1^{\text {st }}$
 order ODE's | |
| :--- | :--- | :--- | :--- |

- Euler's method for finding approximate solutions to first-order differential equations uses the approximation

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{0}}{h}
$$

It is often more useful to write this as an iterative formula:

$y_{r+1} \approx y_{r}+h\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)_{r}, r=0,1,2, \ldots$

Example] 1)

$y=\mathrm{f}(x)$ satisfies the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}+y}{y^{2}-x}$ and the initial condition, $\mathrm{f}(3)=-1$
Use two iterations of Euler's method to estimate the value of $f(4)$, giving your answer correct to 2 decimal places.

$$
\begin{aligned}
& h=0.5 \\
& \left(x_{0}, y_{0}\right)=(3,-1) \\
& \begin{aligned}
\left(\frac{d y}{d x}\right)_{0}= & \frac{3^{2}-1}{(-1)^{2}-3}=-4 \\
y_{1} & \approx y_{0}+h\left(\frac{d y}{d x}\right)_{0} \\
& =-1+0.5 \times(-4) \\
& =-3
\end{aligned} \\
& \begin{aligned}
\left(x_{1}, y_{1}\right) & =(3.5,-3) \\
\binom{d y}{d x}_{1} & =\frac{3.5^{2}-3}{(-3)^{2}-3.5}=1.6818 \ldots \\
y_{2} & \approx y_{1}+h\left(\frac{d y}{d x}\right)_{1} \\
& =-3+0.5 \times 1.6818 \ldots \\
& =-2.15909 \ldots
\end{aligned}
\end{aligned}
$$

\qquad

So $f(4) \approx-2.16$ (2 d.p.) You need to use two iterations to get from $x_{0}=3$ to $x_{2}=4$, so your step length will be 0.5 .

Substitute the values of x_{0} and y_{0} into the differential equation to find the value of $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0}$

$$
=-3 \square \quad \text { Your values of } x_{1} \text { and } y_{1} \text { determine the starting }
$$ point for the next iteration. Use the differential equation to find the gradient at $\left(x_{1}, y_{1}\right)$.

1 Use Euler's method to estimate the value at $x=2$ of the particular solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+y^{2}
$$

which passes through the point $(1,2)$. Use a step length of 0.25 .

Midpoint method

- The midpoint method for finding approximate solutions to first-order differential equation
uses the formula

$$
\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h}
$$

It is often more useful to write this as an iterative formula:

$$
y_{r+1} \approx y_{r-1}+2 h\left(\frac{d y}{d x}\right)_{r}, r=0,1,2, \ldots
$$

Example 2

Use the midpoint formula with a step length of 0.25 to estimate the value at $x=0.5$ of the particular solution to the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y+y}{y^{2}+x^{2}}
$$

which passes through the point $(0,2)$. Give your answer correct to 4 decimal places.

Ellemaleu ny vallocalillen

$$
\begin{aligned}
& y_{2} \approx y_{0}+2 h\left(\frac{d y}{d x}\right)_{1} \quad \begin{array}{l}
\text { Your initial condition will be }\left(x_{0}, y_{0}\right) \text {, so rewrite the } \\
\text { midpoint formula using } y_{2} \text { and } y_{0} .
\end{array} \\
& x_{0}=0, y_{0}=2, h=0.25
\end{aligned}
$$

$x_{1}=0.25$
$x_{2}=0.5$
$\left(\frac{d y}{d x}\right)_{0}=\frac{0 \times 2+2}{2^{2}+0^{2}}=\frac{1}{2}$
$y_{1} \approx y_{0}+\left(\frac{d y}{d x}\right)_{0} h$
$=2+\frac{1}{2} \times 0.25$
$=2.125$
$\left(\frac{d y}{d x}\right)_{1}=\frac{0.25 \times 2.125+2.125}{2.125^{2}+0.25^{2}}=0.58020 \ldots$ Calculate $\left(\frac{d y}{d x}\right)_{1}$ using your value of y_{1}.
$y_{2} \approx y_{0}+2 h\left(\frac{d y}{d x}\right)_{1}$
$=2+2 \times 0.25 \times 0.58020 \ldots$
$=2.2901$ (4 d.p.)

1 A particular solution to the differential equation $\frac{w y}{\mathrm{~d} x}=x^{3}-y^{2}$ passes through the point $(2,2)$.
a Taking $\left(x_{0}, y_{0}\right)=(2,2)$ and $x_{1}=2.25$, apply Euler's method once to obtain a value for y_{1}. b Apply the midpoint method once to obtain an approximate value for the solution to the differential equation at $x=2.5$.

1 a 3

| | Euler's method for numerically solving $2^{\text {nd }}$
 order ODE's | |
| :--- | :--- | :--- | :--- |

- Euler's method can be extended to find approximate solutions to second-order differential equations using the formula

$$
\left(\frac{d^{2} y}{d x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}}
$$

It is often more useful to write this as an iterative formula:

$$
y_{r+1} \approx 2 y_{r}-y_{r-1}+h^{2}\left(\frac{d^{2} y}{d x^{2}}\right)_{r}, r=0,1,2, \ldots
$$

If a second-order differential equation is of the form $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{f}(x, y)$, you can use a single application of Euler's method to find y_{1} before applying the above iterative formula.

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-\sin (x+t)=0 . \text { When } t=0, x=-1 \text { and } \frac{\mathrm{d} x}{\mathrm{~d} t}=3
$$

Use the approximations $\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)_{0} \approx \frac{x_{1}-x_{0}}{h}$ and $\left(\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}\right)_{0} \approx \frac{x_{1}-2 x_{0}+x_{-1}}{h^{2}}$ to obtain estimates for x at $t=0.1$ and $t=0.2$, giving your answers correct to 4 decimal places.

$$
\begin{aligned}
& x_{0}=-1,\left(\frac{d x}{d t}\right)_{0}=3, h=0.1 \\
& \left.\begin{array}{rl}
x_{1} & \approx x_{0}+h\left(\frac{d x}{d t}\right)_{0} \\
& =-1+0.1 \times 3
\end{array}\right] \quad \begin{array}{l}
\text { You need two values of } x \text { to substitute into the }
\end{array} \\
& =-0.7 \\
& \text { can use Euler's formula to find } x_{1} \text {. } \\
& \left(\frac{d^{2} x}{d t^{2}}\right)_{1}=\sin \left(x_{1}+t_{1}\right) \downarrow \quad \text { Rearrange the original equation to evaluate } \\
& =\sin (-0.7+0.1) \\
& =-0.5646 \ldots \\
& x_{2} \approx 2 x_{1}-x_{0}+h^{2}\left(\frac{d^{2} x}{d t^{2}}\right) \text {, } \\
& =2(-0.7)-(-1)+0.1^{2}(-0.5646 \ldots) \\
& =-0.4056 \text { (4 d.p.) } \\
& \text { Warchout Be careful with the index numbers } \\
& \text { when using the approximation formula for } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \\
& \text { The index number of } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}} \text { should be one less } \\
& \text { than the index number of the value you are } \\
& \text { approximating. }
\end{aligned}
$$

If a second-order differential equation includes a term in $\frac{\mathrm{d} y}{\mathrm{~d} x}$, you will also need to make use of the approximation $\left(\frac{d y}{d x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h}$

1 Use the approximations $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{0}}{h}$ and $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}}$ to obtain estimates for y_{1}, y_{2} and y_{3} for the following differential equations. In each case the initial conditions and step length are given.
a $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x+y-1$, given that when $x=2, y=4$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1, h=0.1$

1 Use L'Hospital's rule to calculate the following limits.
a $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+3 x-4}$
b $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
1 a $\frac{2}{5}$
b 4

Note: pronounce Leibni(t)z as 'Lipenits' not as in the video!

Use Leibnitz's theorem to find $i) \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(\frac{e^{x}}{\cos x}\right)$ ii) $\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}\left(x^{3} \sin x\right)$

Gottfried Wilhelm Leibniz

