A2 Double (Further) Maths Further Pure 1 (FP1) Learning Pack

Name_____

Version 0.5 04-May-2020

Week beginning	Lesson		<u>Chapter</u>	<u>Topic</u>	<u>Page</u>
27/4		Core	9	Vectors	1,2
4/5		Core	9	Vectors	3,4,5
11/5		Core	9	Vectors	3,4,5
11/5		core	4	Inequalities	
25/5	Half term		4		
1/6	Progression leave				
8/6	FIOGLESSIONIEave		5	t-formula	
17/6 - 1/7			5		
8/7			2	Conics 1: parabolas, hyperbolas	8,9
15/7			2	Conics 1: tangents, normal, loci	10
15/7	Summer holiday		2	comes 1. tangents, normal, loci	10
7/0	Summer nonday				
7/9 14/9			2	Conies 1	11
		Coro	9	Conics 1 Consolidation: Vectors	11
21/9		Core	9	Cons. t-formula inequalities	-
28/9				Cons. t-formula inequalities	13,14
5/10			7		15
12/10			7	Weierstrass substitution	15
19/10					
26/10	Half term				
2/11					
9/11	Study leave ?				10
16/11			3	Conics 2	16
			3	Conics 2	17
23/11			3	Conics 2	18
			3	Conics 2	19
			6	Taylor series	20
30/11				Taylor series solution to DE	21
7-14/12	-				
-	Christmas				
4/1					
11/1			1	FP1 Vectors	22
18/1			1	FP1 Vectors	24
25/1			9	First ODE's using substitution	25
1/2			9	Second ODE's using substitution	26
8/2	mocks				
15/2	Half term				
22/2 - 1/3					
8/3			8	Simpson's rule	27
			8	Euler's method	28
			8	Midpoint method	29
			8	Euler for 2 nd order DE's	30
15/3			7	L'Hôpital's rule	31
			7	Leibnitz' theorem	32

Vectors: Equation of a line	
Vector equation of a line	https://www.youtube.com/watch?v=r24zBidwago
Cartesian equation of a line	https://www.youtube.com/watch?v=puVoOw3hNGY
Vector equation of a plane	https://www.youtube.com/watch?v=T76x5B9rf5g

- 1) What is the vector equation of a line between two points A and B
- 2) What is the vector equation of a line that goes through point A and is parallel to vector \boldsymbol{b}

The following are points

$$A = (3,1,2) B = (-1,2,-1) C = (2,-1,3)$$

- 3) Find a vector equation of the line that goes through point A and B
- 4) Find a Cartesian equation of the line that goes through point *A* and *B*
- 5) Find a vector equation of a plane that contains the points A, B and C

$$(\operatorname{ans} r = \begin{pmatrix} 3\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} -4\\1\\-3 \end{pmatrix}, \frac{x-3}{-4} = \frac{y-1}{1} = \frac{z-2}{-3}, r = \begin{pmatrix} 3\\1\\2 \end{pmatrix} + \lambda \begin{pmatrix} -4\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$

Vectors:	
Dot Product	https://www.youtube.com/watch?v=5XVFQix8tAk
Angle between two lines	https://www.youtube.com/watch?v=LyZ_xe- OHMI

What are the two formulas for $\pmb{a}\cdot \pmb{b}$

The following are vectors

$$\boldsymbol{a} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} \qquad \qquad \boldsymbol{b} = \begin{pmatrix} 0\\-2\\3 \end{pmatrix}$$
$$\boldsymbol{c} = \begin{pmatrix} -1\\3\\4 \end{pmatrix} \qquad \qquad \boldsymbol{d} = \begin{pmatrix} 1\\-2\\-1 \end{pmatrix}$$

- 1) Evaluate
 - a. **a** · **b**
 - b. *c* · *b*
 - c. *d* · *a*
 - d. **b** · **d**
- 2) Find an angle between the vectors **a** and **b**
- 3)

The lines l_1 and l_2 have vector equations $\mathbf{r} = (2\mathbf{i} + \mathbf{j} + \mathbf{k}) + t(3\mathbf{i} - 8\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = (7\mathbf{i} + 4\mathbf{j} + \mathbf{k}) + s(2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ respectively.

Given that l_1 and l_2 intersect, find the size of the acute angle between the lines to one decimal place.

(Ans? -2, 6, 0, 1, 104.36 or 75.63, 68.5)

Vectors:	
Equation of a plane in scalar from	https://www.youtube.com/watch?v=aGZY6I9Rr5A
Angles between lines and planes	https://www.youtube.com/watch?v=wtpwM2y86So
Angles between two planes	https://www.youtube.com/watch?v=2LNhYZBPkDE

The following are points

$$A = (3,1,2)$$

$$B = (-1,2,-1)$$

$$C = (-1,1,2)$$

- 1) Given that C is perpendicular to the plane Π and that the plane Π contains the points A and B. Find the scalar equation of the plane Π.
- 2) Find the Cartesian equation of the plane Π .
- 3)

Find the acute angle between the line *l* with equation $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 5\mathbf{k} + \lambda(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k})$ and the plane with equation $\mathbf{r}.(2\mathbf{i} - 2\mathbf{j} - \mathbf{k}) = 2$.

4)

Find the acute angle between the planes with equations $\mathbf{r}.(4\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}) = 13$ and $\mathbf{r}.(7\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) = 6$ respectively.

(ans?
$$r.\begin{pmatrix} -1\\1\\2 \end{pmatrix} = 1, -x + y + 2z = 1, 14.9^{\circ}, 78.6^{\circ}$$

Vectors:	
Points of intersection of lines	https://www.youtube.com/watch?v=U9NfRbvyZZM
Points of intersection of line and plane	https://www.youtube.com/watch?v=5vqzZCp1R_M

1)

The lines l_1 and l_2 have vector equations

 $\mathbf{r} = 3\mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = -2\mathbf{j} + 3\mathbf{k} + \mu(-5\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ respectively.

Show that the two lines intersect, and find the position vector of the point of intersection.

2) D

Find the coordinates of the point of intersection of the line *l* and the plane Π where *l* has equation $\mathbf{r} = -\mathbf{i} + \mathbf{j} - 5\mathbf{k} + \lambda(\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ and Π has equation $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 4$.

(Ans, (5, -3, -1), (1,3,-1)

Vectors:	
Shortest distance between a point and a	
plane	
Shortest distance between a point and a	https://www.youtube.com/watch?v=ZbcZTpd0VBI
line	
Shortest distance between skew lines using	https://www.youtube.com/watch?v=HC5YikQxwZA
the scalar product	

The equation given in the formula book for the shortest distance between a point and a plane is given as

The perpendicular distance from the point with coordinates (α , β , γ) to the plane with equation ax + by + cz = d is

 $\frac{|a\alpha + b\beta + c\gamma - d|}{\sqrt{a^2 + b^2 + c^2}}$

1)

Find the perpendicular distance from the point with coordinates (3, 2, -1) to the plane with equation 2x - 3y + z = 5.

2)

The line *l* has equation $\frac{x-1}{2} = \frac{y-1}{-2} = \frac{z+3}{-1}$, and the point *A* has coordinates (1, 2, -1). **a** Find the shortest distance between *A* and *l*.

3)

The lines l_1 and l_2 have equations $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$ respectively, where λ and μ are scalars.

Find the shortest distance between these two lines.

$$(ans \frac{6}{\sqrt{14}}, \frac{\sqrt{29}}{3}, 2\sqrt{2})$$

Inequalities	
	https://www.youtube.com/watch?v=r3tYTA4H61A

Question 3 (**)

Find the set of values of x that satisfy the inequality

 $\frac{5x}{x^2+4} < x.$

 $\boxed{-1 < x < 0}, \ \boxed{x > 1}$

The t formula	
Derivation	https://www.youtube.com/watch?v=jsAVMhmsFco
Using t substitution	https://www.youtube.com/watch?v=6_QqFUwKwyk

Using the substitution $t = tan \frac{\theta}{2}$, prove that

$$\tan^2\theta + \tan\theta\sec\theta + 1 \equiv \frac{1+\sin\theta}{\cos^2\theta}$$

Conics: Parabola	
Cartesian and parametric equations of a parabola	https://youtu.be/BfFkDEnBSH0
Focus and directrix properties of a parabola	https://youtu.be/S_Qlz8Xke4s

- 1) What is the Cartesian equation of a parabola
- 2) What are the parametric equations of a parabola
- 3) What is defined to be the focus of a parabola?
- 4) What is defined to be the directrix of a parabola?

5) G

Find an equation of the parabola with:

a focus (7, 0) and directrix x + 7 = 0

6) F

Find the coordinates of the focus and an equation for the directrix of a parabola with equation:

a $y^2 = 24x$

 $(ans y^2 = 28x, (6,0) x + 6 = 0)$

Conics: Rectangular Hyperbola	
Cartesian and Parametric equations of a rectangular	https://youtu.be/xmEQY7RfNdg
hyperbola	
	100000000
	- Xexen
	国会に確認

- 1) What is the Cartesian equation of the rectangular hyperbola?
- 2) What are the parametric equations of the rectangular hyperbola?
- 3) What are the equations of the asymptotes of the rectangular hyperbola?

Conics:	
Tangents and normals	https://youtu.be/WD4HkEw7rJI
Loci	https://youtu.be/9Lpm5ZQZceg

1)

The point *P* with coordinates (75, 30) lies on the parabola *C* with equation $y^2 = 12x$. Find the equation of the tangent to *C* at *P*, giving your answer in the form y = mx + c, where *m* and *c* are constants.

(ans, $y = \frac{x}{5} + 15$,)

Conics:	
Consolidation	

- 1 The ellipse *E* has parametric equations $x = 4\cos\theta$, $y = 9\sin\theta$.
 - a Find a Cartesian equation of the ellipse.
 - **b** Sketch the ellipse, labelling any points of intersection with the coordinate axes.
 - **c** Find the equation of the normal to the ellipse at $P(4\cos\theta, 9\sin\theta)$.

Vec	ctors					
Cor	nsolidation					

The plane Π has equation -2x + y + z = 5. The point *P* has coordinates (1, 0, 3).

a Find the shortest distance between P and Π .

The point Q is the reflection of the point P in Π .

b Find the coordinates of point Q.

a
$$\frac{2\sqrt{6}}{3}$$
 b $Q\left(-\frac{5}{3},\frac{4}{3},\frac{13}{3}\right)$

The t formula	
Consolidation	

3 Using the substitution $t = \tan \frac{\theta}{2}$, prove that $\sin \theta + \sin \theta \cot^2 \theta \equiv \csc \theta$ for $\theta \neq n\pi$, $n \in \mathbb{Z}$

(4 marks)

Inequalities	
Consolidation	

7 Solve
$$\frac{4x}{|x|+2} < x$$

-2 < x < 0 or x > 2Ans.

Weierstrass substitution	
"The sneakiest substitution in mathematics"	

Use the Weierstrass substitution to show that

$$\int \sin\theta \, d\theta = -\cos\theta$$

Conics 2 https://en.wikipedia.org/wiki/Ellipse https://en.wikipedia.org/wiki/Hyperbola	

- 1) What is the standard Cartesian equation for an ellipse?
- 2) What are the standard parametric equations for an ellipse?
- 3) What is the standard Cartesian equation for a hyperbola?
- 4) What are the parametric equations for a hyperbola?
- 5) Find the equation of the tangent to the ellipse with equation

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

At the point $P(3\cos t, 2\sin t)$

(Ans 5) $3y \sin t + 2x \cos t$)

Conics 2	
----------	--

An ellipse has Cartesian equation

$$2x^2 + 3y^2 - 4x + 12y + 8 = 0.$$

Determine ...

- a) ... the coordinates of the centre of the ellipse.
- **b**) ... the eccentricity of the ellipse.
- c) ... the coordinates of the foci of the ellipse.
- **d**) ... the equations of the directrices of the ellipse.

$$(1,-2)$$
, $e = \frac{\sqrt{3}}{3}$, $(0,-2)$, $(2,-2)$, $x = -2$, $x = 4$

Conics 2	
----------	--

Question 13 (***+)

An ellipse has equation

$$x^2 - 8x + 4y^2 + 12 = 0.$$

a) Determine the coordinates of the foci and the equations of the directrices of the ellipse.

A straight line with positive gradient passes through the origin O and touches the ellipse at the point A.

b) Find the coordinates of *A*.

$$(4-\sqrt{3},0), (4+\sqrt{3},0), x = 4-\frac{4}{3}\sqrt{3}, x = 4+\frac{4}{3}\sqrt{3}$$

Conics 2		
----------	--	--

Question 7 (***)

An ellipse E has Cartesian equation

$$\frac{x^2}{289} + \frac{y^2}{64} = 1.$$

- a) Find the coordinates of the foci of E, and the equations of its directrices.
- **b**) Sketch the ellipse.

The point *P* lies on *E* so that *PS* is vertical, where *S* is the focus of the ellipse with positive x coordinate.

c) Show that the tangent to the ellipse at the point P meets one the directrices of the ellipse on the x axis.

$$y = \frac{1}{\sqrt{x}}, \ x > 0$$

- **a**) Find the first four terms in the Taylor expansion of y about x = 1.
- **b**) Use the first three terms of the expansion with $x = \frac{8}{9}$ to show $\sqrt{2} \approx \frac{229}{162}$.

$$y = 1 - \frac{1}{2}(x-1) + \frac{3}{8}(x-1)^2 - \frac{5}{16}(x-1)^3 + O((x-1)^4)$$

Taylor series solution to ODE's <u>https://www.youtube.com/watch?v=Ky5fWB0OHa4</u>	
--	--

A curve has an equation y = f(x) that satisfies the differential equation

$$\frac{dy}{dx} = x^2 - y^2 \,,$$

subject to the condition x = 0, y = 2.

Find the first four terms in the expansion of y = f(x) in powers of x.

$$y = 2 - 4x + 8x^2 - \frac{47}{3}x^3 + O\left(x^4\right)$$

FP1 Vectors	
Vector product -	
Mod of cross product -	https://www.youtube.com/watch?v=2wTUqZa66ng
Area of a triangle-	https://www.youtube.com/watch?v=3tEdru2rwul
	https://www.youtube.com/watch?v=IHRY5DgGdBI
Area of a parallelogram -	https://www.youtube.com/watch?v=CD0MXPhRkvQ
Volume of a tetrahedron –	https://www.youtube.com/watch?v=RVDmjbuFEUo
Volume of a parallelepiped -	
	https://www.youtube.com/watch?v=qpsFTTAu15M

- 1) Given a = 2i 3j and b = 4i + j k find $a \times b$ Verify that $a \times b$ is perpendicular to both a and b
- 2) Find the sine of the acute angle between the vectors a = 2i + j + 2k and b = -3j + 4k
- 3) Find the area of triangle OAB, where o is the origin. A is the point with positon vector i j and B is the point with position vector 3i + 4j 6k
- 4) Find the area of the parallelogram *ABCD*, where the position vectors of *A*, *B* and *D* are 2i + j k, 6i + 4j 3k and 14i + 7j 6k respectively.
- 5) Find the volume of a tetrahedron which has vertices at (1,1,-1), (2,4,-1), (3,0,-2) and (0,4,5)
- 6) Find the volume of the parallelepiped *ABCDEFGH* where the vertices *A*, *B*, *D* and *E* have coordinates (0,0,0), (3,0,1), (1,2,0) and (1,1,3)

(Ans 1) 31+2j+14k 2) $\frac{2\sqrt{2}}{3}$ 3) $\frac{\sqrt{121}}{2}$ 4) 13 5) 6 6)17)

FP1 Vectors Vector product equation of a straight line - <u>https://www.youtube.com/watch?v=krc4mH9z4gE</u>	
---	--

- 1) Find the vector equation of the line through the points (1,2,-1) and (3,-2,2) in the form $(r-1) \times b = 0$
- 2)
- a. Find, in the form r.n = p, an equation of the plane which contains the line l and the point with position vector a where l has equation $r = 3i + 5j 2k + \lambda(-i + 2j k)$ and a = 4i + 3j + k
- b. Give the equation of the plane in Cartesian form

(Ans 2) r. (4i + 2j) = 22)

ODE Substitution <u>https://www.youtube.com/watch?v=iSHFmV1xxhk</u>	
---	--

- a) Use the substitution u = y x to transform the differential equation $\frac{dy}{dx} = \frac{y x + 2}{y x + 3}$ into a differential equation in u and x
- b) By first solving this new equation, show that the general solution to the original equation, show that the general solution to the original equation may be written in the form

$$(y-x)^2 + 6y - 4x - 2c = 0$$

Where c is an arbitrary constant.

(Ans)

ODE Substitution	
------------------	--

The differential equation

$$x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 3x, \ x \neq 0,$$

is to be solved subject to the boundary conditions $y = \frac{3}{2}$, $\frac{dy}{dx} = \frac{1}{2}$ at x = 1.

a) Show that the substitution $v = \frac{dy}{dx}$, transforms the above differential equation into

$$\frac{dv}{dx} + \frac{2v}{x} = 3.$$

b) Hence find the solution of the original differential equation, giving the answer in the form y = f(x).

$y = \frac{1}{2} \left(x^2 \right)$	$+\frac{1}{x}+1$
--------------------------------------	------------------

Simpson's rule https://www.youtube.com/watch?v=ns3k- Lz7qWU	

Simpson's rule is used to find the approximate area under a graph. Since integration between two limits also gives the area under a graph then Simpson's rule can often be used as a way of finding an approximate value of a definite integral. It is an improvement on the trapezium rule as it uses a parabola rather than a straight line between intervals as an approximation to the curve.

(i)

Use Simpson's rule with 4 intervals to estimate

(ii) Find the exact value of this integral

(iii) Hence the relative error in %: $\frac{\dots\dots -0.7207}{0.7207} \times 100\%$

Euler's method for numerically solving 1 st	
order ODE's	

 Euler's method for finding approximate solutions to first-order differential equations uses the approximation

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\mathrm{o}} \approx \frac{y_{\mathrm{1}} - y_{\mathrm{o}}}{h}$$

It is often more useful to write this as an iterative formula:

$$y_{r+1} \approx y_r + h\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_r, r = 0, 1, 2, \dots$$

Example 1

y = f(x) satisfies the differential equation $\frac{dy}{dx} = \frac{x^2 + y}{y^2 - x}$ and the initial condition, f(3) = -1.

Use two iterations of Euler's method to estimate the value of f(4), giving your answer correct to 2 decimal places.

1 Use Euler's method to estimate the value at x = 2 of the particular solution to the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y^2$$

which passes through the point (1, 2). Use a step length of 0.25.

Hide

1 87.3 (3 s.f.)

Intermidpoint method for finding approx	timete colutions to first-order die
uses the formula	nt method equations to first-order differential equations
$(\mathbf{d}y) y_1 - y_{-1}$	2005
$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{0}\approx\frac{y_{1}-y_{-1}}{2h}$	
It is often more useful to write this as a	
$y_{r+1} \approx y_{r-1} + 2h\left(\frac{dy}{dx}\right)_r, r = 0, 1, 2,$	
(da) _p	
xample 2	
Jse the midpoint formula with a step leng	th of 0.25 to estimate the value at $x = 0.5$ of the
articular solution to the differential equat	lion
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy+y}{y^2+x^2}$	
y i x	
which passes through the point (0, 2). Give	e your answer correct to 4 decimal places.
(dv)	Your initial condition will be (x_0, y_0) , so rewrite the
$\approx y_0 + 2h\left(\frac{dy}{dx}\right)_1$.	midpoint formula using y_2 and y_0 .
$= 0, v_0 = 2, h = 0.25$	
= 0.25	(Watch out) Write down the information you
= 0.5 (iv) $0 \times 2 + 2 = 1$	know. You can't calculate $\left(\frac{dy}{dx}\right)_1$ without a value
	for the Fost step in your method is to USP
	for y_{1} , so the first step in your method is to use
	Euler's method to find y_1 .
$\approx y_0 + \left(\frac{dy}{dx}\right)_0 h$	
$ \frac{dy}{dx}\Big _{0} = \frac{O \times 2 + 2}{2^{2} + O^{2}} = \frac{1}{2} $ $ y_{0} + \left(\frac{dy}{dx}\right)_{0} h $ $ = 2 + \frac{1}{2} \times 0.25 $ $ = 2.125 $	Euler's method to find y_1 .
$f_{1} \approx y_{0} + \left(\frac{dy}{dx}\right)_{0} h$ $= 2 + \frac{1}{2} \times 0.25$ $= 2.125$	
$f_{1} \approx y_{0} + \left(\frac{dy}{dx}\right)_{0} h$ $= 2 + \frac{1}{2} \times 0.25$ $= 2.125$	Euler's method to find y_1 .
$\begin{aligned} & x_{10} = \frac{dy}{dx} \\ & h = 2 + \frac{1}{2} \times 0.25 \\ & = 2.125 \\ & \frac{dy}{dx} \\ & h = \frac{0.25 \times 2.125 + 2.125}{2.125^{2} + 0.25^{2}} = 0.58020 \\ & y_{2} \approx y_{0} + 2h \left(\frac{dy}{dx}\right)_{1} \\ & = 2 + 2 \times 0.25 \times 0.58020 \end{aligned}$	Euler's method to find y_1 .

- **a** Taking $(x_0, y_0) = (2, 2)$ and $x_1 = 2.25$, apply Euler's method once to obtain a value for y_1 .
- **b** Apply the midpoint method once to obtain an approximate value for the solution to the differential equation at x = 2.5.

1 a 3

Euler's method for numerically solving 2 nd	
order ODE's	

Euler's method can be extended to find approximate solutions to second-order differential equations using the formula

$$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$$

It is often more useful to write this as an iterative formula:

$$y_{r+1} \approx 2y_r - y_{r-1} + h^2 \left(\frac{d^2y}{dx^2}\right)_r, r = 0, 1, 2, ...$$

If a second-order differential equation is of the form $\frac{d^2y}{dx^2} = f(x, y)$, you can use a single application of Euler's method to find y_1 before applying the above iterative formula.

 $\frac{d^2x}{dt^2} - \sin(x+t) = 0. \text{ When } t = 0, x = -1 \text{ and } \frac{dx}{dt} = 3.$ Use the approximations $\left(\frac{dx}{dt}\right)_0 \approx \frac{x_1 - x_0}{h} \text{ and } \left(\frac{d^2x}{dt^2}\right)_0 \approx \frac{x_1 - 2x_0 + x_{-1}}{h^2}$ to obtain estimates for x_{at} t = 0.1 and t = 0.2, giving your answers correct to 4 decimal places.

If a second-order differential equation includes a term in $\frac{dy}{dx}$, you will also need to make use of the approximation $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 - y_{-1}}{2h}$

1 Use the approximations $\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 - y_0}{h}$ and $\left(\frac{d^2y}{dx^2}\right)_0 \approx \frac{y_1 - 2y_0 + y_{-1}}{h^2}$ to obtain estimates for y_1, y_2 and y_3 for the following differential equations. In each case the initial conditions and step length are given.

a
$$\frac{d^2y}{dx^2} = x + y - 1$$
, given that when $x = 2$, $y = 4$ and $\frac{dy}{dx} = 1$, $h = 0.1$

1 a 4.1, 4.252, 4.45852

1 Use L'Hospital's rule to calculate the following limits.

a
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + 3x - 4}$$

b $\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - 2}$

1 a $\frac{2}{5}$ **b** 4

	Leibnitz' theorem	
	https://youtu.be/tvszK9x2-1Q	
		I REA

Note: pronounce Leibni(t)z as 'Lipenits' not as in the video!

Gottfried Wilhelm Leibniz German polymath