FP2 PRACTICE PAPER 6

1. (a) Express $\frac{1}{r(r+2)}$ in partial fractions.
(b) Hence prove, by the method of differences, that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{4}{r(r+2)}=\frac{n(3 n+5)}{(n+1)(n+2)} \tag{5}
\end{equation*}
$$

(c) Find the value of $\sum_{r=50}^{100} \frac{4}{r(r+2)}$, to 4 decimal places.
2. (a) Show that the transformation $y=x v$ transforms the equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2+9 x^{2}\right) y=x^{5}, \tag{I}
\end{equation*}
$$

into the equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} v}{\mathrm{~d} x^{2}}+9 v=x^{2} \tag{5}
\end{equation*}
$$

II
(b) Solve the differential equation II to find v as a function of x.
(c) Hence state the general solution of the differential equation I.
3. The curve C has polar equation $\quad r=6 \cos \theta, \quad-\frac{\pi}{2} \leq \theta<\frac{\pi}{2}$, and the line D has polar equation $\quad r=3 \sec \left(\frac{\pi}{3}-\theta\right), \quad-\frac{\pi}{6} \leq \theta<\frac{5 \pi}{6}$.
(a) Find a cartesian equation of C and a cartesian equation of D.
(b) Sketch on the same diagram the graphs of C and D, indicating where each cuts the initial line.

The graphs of C and D intersect at the points P and Q.
(c) Find the polar coordinates of P and Q.
4. Find the general solution of the differential equation

$$
(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\frac{1}{x}, \quad x>0 .
$$

giving your answer in the form $y=\mathrm{f}(x)$.
5. (a) On the same diagram, sketch the graphs of $y=\left|x^{2}-4\right|$ and $y=|2 x-1|$, showing the coordinates of the points where the graphs meet the axes.
(b) Solve $\left|x^{2}-4\right|=|2 x-1|$, giving your answers in surd form where appropriate.
(c) Hence, or otherwise, find the set of values of x for which of $\left|x^{2}-4\right|>|2 x-1|$.
6. (a) Given that $z=\mathrm{e}^{\mathrm{i} \theta}$, show that

$$
z^{n}-\frac{1}{z^{n}}=2 i \sin n \theta
$$

where n is a positive integer.
(b) Show that

$$
\begin{equation*}
\sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta) \tag{5}
\end{equation*}
$$

(c) Hence solve, in the interval $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\sin 5 \theta-5 \sin 3 \theta+6 \sin \theta=0 \tag{5}
\end{equation*}
$$

7.

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 y^{2}+(1-2 x) \frac{\mathrm{d} y}{\mathrm{~d} x} \text {. } \tag{I}
\end{equation*}
$$

(a) By differentiating equation (I) with respect to x, show that

$$
\begin{equation*}
\left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=(1-4 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(4 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x} . \tag{3}
\end{equation*}
$$

Given that $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ at $x=0$,
(b) find the series solution for y, in ascending powers of x, up to and including the term in x^{3}.
(c) Use your series to estimate the value of y at $x=-0.5$, giving your answer to two decimal places.

