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FP2 PRACTICE PAPER 6 

1. (a) Express 
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 (b) Hence prove, by the method of differences, that 
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 (c) Find the value of 
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, to 4 decimal places. 
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2. (a) Show that the transformation y = xv transforms the equation 
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 (b) Solve the differential equation II to find v as a function of x. 

(6) 

(c) Hence state the general solution of the differential equation I. 

(1) 

 

 

3. The curve C has polar equation r = 6 cos  ,  –
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 and the line D has polar equation r = 3 sec 
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 (a) Find a cartesian equation of C and a cartesian equation of D. 

(5) 

 (b) Sketch on the same diagram the graphs of C and D, indicating where each cuts the 

initial line. 

(3) 

 The graphs of C and D intersect at the points P and Q. 

 (c) Find the polar coordinates of P and Q.  

(5) 

 

 

4. Find the general solution of the differential equation 

(x + 1)
x
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d
 + 2y = 

x

1
,       x > 0. 

 giving your answer in the form y = f(x). 

(7) 
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5. (a) On the same diagram, sketch the graphs of y = x
2
 – 4  and y = 2x – 1 , showing the 

coordinates of the points where the graphs meet the axes. 

(4) 

 (b) Solve  x
2
 – 4 = 2x – 1 , giving your answers in surd form where appropriate. 

(5) 

(c) Hence, or otherwise, find the set of values of x for which of  x
2
 – 4 > 2x – 1 . 

(3) 

 

 

6. (a) Given that z = e
i

, show that 

z
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nz

1
 = 2i sin n , 

  where n is a positive integer. 
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 (b) Show that 

sin
5
   = 

16

1
(sin 5  – 5 sin 3  + 10 sin  ). 

(5) 

 (c) Hence solve, in the interval 0   < 2, 

 

sin 5 – 5 sin 3  + 6 sin   = 0. 

(5) 
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(a)  By differentiating equation (I) with respect to x, show that 
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Given that y = 1 and  
x

y

d

d
 = 1 at x = 0, 

 

(b)  find the series solution for y, in ascending powers of x, up to and including the term in x
3
. 

(4) 

(c)  Use your series to estimate the value of y at x = –0.5, giving your answer to two decimal 

places. 

(1) 
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