1. (a)	Integrating Factor $= e^{2x}$ $\frac{d}{dx}(ye^{2x}) = xe^{2x}$ $ye^{2x} = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x}dx$ $= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$ $\therefore y = \frac{1}{2}x - \frac{1}{4} + ce^{-2x}$	Min point and passing through (0,1) shape	B1 M1 M1 A1 A1 (5))
(b)	$1 = c - \frac{1}{4} \longrightarrow c = \frac{5}{4}$		M 1	
	$\therefore y = \frac{1}{2}x - \frac{1}{4} + \frac{5}{4}e^{-2x}$ and $\frac{dy}{dx} = \frac{1}{2} - \frac{5}{2}e^{-2x}$		M1	
	When $y' = 0$, $e^{-2x} = \frac{1}{5}$ $\therefore 2x = \ln 5$		M1	
	$x = \frac{1}{2} \ln 5$, $y = \frac{1}{4} \ln 5$ at minimum point.		A1 (4)
(c)			B1	
			B1 (2)

[P4 June 2004 Qn 6]

- 2.	(a)	Auxiliary equation: $m^2 + 2m + 2 = 0 \rightarrow m = -1 \pm i$	M1	
		Complementary Function is $y = e^{-t}(A\cos t + B\sin t)$	M1A1	
		Particular Integral is $y = \lambda e^{-t}$, with $y' = -\lambda e^{-t}$, and $y'' = \lambda e^{-t}$	M1	
		$\therefore (\lambda - 2\lambda + 2\lambda)e^{-t} = 2e^{-t} \rightarrow \lambda = 2$	A1	
		$\therefore y = e^{-t} (A\cos t + B\sin t + 2)$	B 1	(6)
				(0)
	(b)	Puts $1 = A+2$ and solves to obtain $A = -1$	M1,	
		$y' = e^{-t} (-A\sin t + B\cos t) - e^{-t} (A\cos t + B\sin t + 2)$	M1 A1ft	
		Puts $1 = B - A - 2$ and uses value for A to obtain B	M1	
		B=2	A1cso	
		$\therefore y = e^{-t} (2\sin t - \cos t + 2)$	A1cso	
				(6)

[P4 June 2004 Qn 7]

3. (a)
$$3a(1-\cos\theta) = a(1+\cos\theta)$$

 $2a = 4a\cos\theta \to \cos\theta = \frac{1}{2} \therefore \theta = \frac{\pi}{3} \text{ or } -\frac{\pi}{3}$
 $r = \frac{3a}{2}$
[Co-ordinates of points are $(\frac{3a}{2}, \frac{\pi}{3})$ and $(\frac{3a}{2}, -\frac{\pi}{3})$]
(b) $AB = 2r\sin\theta = \frac{3a\sqrt{3}}{2}$
(c) $Area = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{2}r^2d\theta$
 $= \frac{1}{2}\int [a^2(1+\cos\theta)^2 - 9a^2(1-\cos\theta)^2]d\theta$
 $= \frac{a^2}{2}\int [1+2\cos\theta + \cos^2\theta - 9(1-2\cos\theta + \cos^2\theta)]d\theta$
 $= \frac{a^2}{2}\int [-8+20\cos\theta - 8\cos^2\theta]d\theta$
 $= k[-8\theta + 20\sin\theta ...$
 $\dots -2\sin 2\theta - 4\theta]$
Uses timits $\frac{\pi}{3}$ and $-\frac{\pi}{3}$ correctly or uses twice smaller area and uses limits $\frac{\pi}{3}$
and 0 correctly.(Need not see 0 substituted)
 $= a^2[-4\pi + 10\sqrt{3} - \sqrt{3}]$ or $= a^2[-4\pi + 9\sqrt{3}]$ or $3.022a^2$
(d) $3a\frac{\sqrt{3}}{2} = 4.5 \rightarrow a = \sqrt{3}$
 $\therefore Area = 3[9\sqrt{3} - 4\pi], = 9.07 \text{ cm}^2$
(3) (3)

[P4 June 2004 Qn 8]

4.	(a) $\arg z = \frac{\pi}{4} \implies z = \lambda + \lambda i$ (or putting x and y equal at some s	stage) B1	
	$w = \frac{(\lambda + 1) + \lambda i}{\lambda + (\lambda + 1)i}$, and attempt modulus of numerator or denominator.	ML	
	(Could still be in terms of x and y)		
	$\left (\lambda+1) + \lambda \mathbf{i} \right = \left \lambda + (\lambda+1)\mathbf{i} \right = \sqrt{(\lambda+1)^2 + \lambda^2} , \qquad \qquad \therefore \left w \right = 1 (*)$	A1, A1cso	(4)
	(b) $w = \frac{z+1}{z+i} \implies zw + wi = z+1 \implies z = \frac{1-wi}{w-1}$	M1	
	$ z = 1 \implies 1 - wi = w - 1 $	M1 A1	
	For $w = a + ib$, $ (1+b) - ai = (a-1) + ib $	M1	
	$\sqrt{(1+b)^2 + a^2} = \sqrt{(a-1)^2 + b^2}$	M1	
	b = -a Image is (line) $y = -x$	A1	(6)
(c)	$\xrightarrow{\uparrow}$	B1 B1	(2)
(d)	z = i marked (P) on z-plane sketch.	B1	
	$z = i$ \Rightarrow $w = \frac{1+i}{2i} = \frac{i-1}{-2} = \frac{1}{2} - \frac{1}{2}i$ marked (Q) on w-plane sketch.	B1	(2)
			14

5.	Working from RHS:			
	(a) Combining $\frac{1}{r} - \frac{1}{r+1} [\frac{1}{r(r+1)}]$		М1	
	Forming single fraction : $\frac{r(r-1)(r+1) + (r+1) - r}{r(r+1)}$		М1	
	$= \frac{r(r^2 - 1) + 1}{r(r+1)} = \frac{r^3 - r + 1}{r(r+1)} $ AG		A1cso	(3)
	Note: For A1, must be intermediate step, as shown			
	Working from LHS:			
	(a) $\frac{r(r^2-1)+1}{r(r+1)} = \frac{r(r+1)(r-1)+1}{r(r+1)} = r-1 + \frac{1}{r(r+1)}$	M1		
	Splitting $\frac{1}{r(r+1)}$ into partial fractions	M1		
	Showing $= \frac{r(r^2 - 1) + 1}{r(r+1)} = r - 1 + \frac{1}{r} - \frac{1}{r+1}$ no incorrect working seen	n Al		
	Notes:			
	In first method, second M needs all necessary terms, allowing for sign error	ors		
	In second method first M is for division:			
	Second method mark is for method shown (allow "cover up" rule stated)			
	If long division, allow reasonable attempt which has remainder constant or linear			
	function of r.			
	Setting $\frac{r(r^2 - 1) + 1}{r(r+1)} = \frac{A}{r} + \frac{B}{r+1}$ is M0			
	If 3 or 4 constants used in a correct initial statement,			
	M1 for finding 2 constants; M1 for complete method to find remaining c	constant(s)		

[FP3 June 2008 QN 3

(b)
$$\sum_{i=1}^{n} r_{i} - \sum_{i=1}^{n} 1 + \sum_{i=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1}\right)$$

$$= \frac{n(n+1)}{2}, (-) n, + \dots + \prod_{i=1}^{n} \left[\left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)\right] = M1$$
Simplification of method of differences: $1 - \frac{1}{n+1}$

$$\left\{ = \frac{n(n-1)}{2} + \left[1 - \frac{1}{(n+1)}\right]\right\}$$
Attempt single fraction: $= \frac{n(n+1)(n-1)+2n}{2(n+1)}$ (dep. prev. M1)
 $= \frac{n(n^{2}+1)}{2(n+1)}$ or $\frac{n^{3}+n}{2(n+1)}$ (dep. prev. M1)
 $= \frac{n(n-1)}{2(n+1)} + \left[1 + \frac{1}{2} - \frac{1}{3}\right] + \left[2 + \frac{1}{3} - \frac{1}{4}\right] \dots + \left[n-1 + \frac{1}{n} - \frac{1}{n+1}\right]$
M1
 $= (1+2+3 \dots + n-1), + \left[\left(1 - \frac{1}{n+1}\right)\right]$ any form
 $= \frac{n(n-1)}{2(n+1)} + \left[\frac{1}{n+1}\right]$
 $= \frac{n(n+1)(n-1)+2n}{2(n+1)}$ [Attempt single fraction]
 $= \frac{n(n+1)(n-1)+2n}{2(n+1)}$ [Attempt single fraction]
 $= \frac{n(n^{2}+1)}{2(n+1)} \text{ or } \frac{n^{3}+n}{2(n+1)}$
Notes:
First M mark is for use of method of differences and attempt at some simplification
First A mark is for simplified result of this method (no more than 2 terms)
Second M mark for attempt at forming single fraction, dependent on first M mark
In alternative first B1 need not be added but need to see 1 2 \dots (n-1)

6. (a)
$$(\cos \theta + i \sin \theta)^{1} = \cos \theta + i \sin \theta \quad \therefore \text{ true for } n = 1$$
Assume true for $n = k$, $(\cos \theta + i \sin \theta)^{k} = \cos k\theta + i \sin k\theta$

$$(\cos \theta + i \sin \theta)^{k+1} = (\cos k\theta + i \sin k\theta)(\cos \theta + i \sin \theta)$$

$$= \cos k\theta \cos \theta - \sin k\theta \sin \theta + i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)$$

$$(Can be achieved either from the line above or the line below)$$

$$= \cos(k + 1)\theta + i \sin(k + 1)\theta$$
A1
Requires full justification of $(\cos \theta + i \sin \theta)^{k+1} = \cos(k + 1)\theta + i \sin(k + 1)\theta$

$$(\therefore \text{ true for } n = k + 1 \text{ if true for } n = k) \quad \therefore \text{ true for } n \in \mathbb{Z}^{+}\text{by induction}$$
A1cso (5)
(b)
$$\cos 5\theta = \operatorname{Re} [(\cos \theta + i \sin \theta)^{5}]$$

$$= \cos^{5} \theta + 10\cos^{3} \theta i^{2} \sin^{2} \theta + 5\cos \theta i^{4} \sin^{4} \theta$$

$$= \cos^{5} \theta - 10\cos^{3} \theta (1 - \cos^{2} \theta) + 5\cos \theta (1 - \cos^{2} \theta)^{2}$$
M1
$$\cos 5\theta = 16\cos^{5} \theta - 20\cos^{3} \theta + 5\cos \theta$$
(*) A1cso (5)
(c)
$$\frac{\cos 5\theta}{\cos \theta} = 0 \implies \cos 5\theta = 0$$

$$M1$$

$$x = 2\cos \theta, \qquad x = 2\cos \frac{\pi}{10} \text{ is a root}$$
(*) A1 (3)
$$(13)$$