FP2 PRACTICE PAPER 5

1. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=x \tag{5}
\end{equation*}
$$

Given that $y=1$ at $x=0$,
(b) find the exact values of the coordinates of the minimum point of the particular solution curve,
(c) draw a sketch of this particular solution curve.
2. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 y=2 \mathrm{e}^{-t} \tag{6}
\end{equation*}
$$

(b) Find the particular solution that satisfies $y=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}=1$ at $t=0$.
3.

Figure 1

Figure 1 is a sketch of the two curves C_{1} and C_{2} with polar equations

$$
\begin{array}{rlr}
C_{1}: r=3 a(1-\cos \theta), & -\pi \leq \theta<\pi \\
\text { and } & C_{2}: r=a(1+\cos \theta), & -\pi \leq \theta<\pi .
\end{array}
$$

The curves meet at the pole O, and at the points A and B.
(a) Find, in terms of a, the polar coordinates of the points A and B.
(b) Show that the length of the line $A B$ is $\frac{3 \sqrt{ } 3}{2} a$.

The region inside C_{2} and outside C_{1} is shown shaded in Fig. 1.
(c) Find, in terms of a, the area of this region.

A badge is designed which has the shape of the shaded region.
Given that the length of the line $A B$ is 4.5 cm ,
(d) calculate the area of this badge, giving your answer to three significant figures.
4. The transformation T from the complex z-plane to the complex w-plane is given by

$$
w=\frac{z+1}{z+\mathrm{i}}, \quad z \neq-\mathrm{i} .
$$

(a) Show that T maps points on the half- $\operatorname{line} \arg (z)=\frac{\pi}{4}$ in the z-plane into points on the circle
$|w|=1$ in the w-plane.
(b) Find the image under T in the w-plane of the circle $|z|=1$ in the z-plane.
(c) Sketch on separate diagrams the circle $|z|=1$ in the z-plane and its image under T in the w-plane.
(d) Mark on your sketches the point P, where $z=\mathrm{i}$, and its image Q under T in the w-plane.
5. (a) Show that

$$
\begin{equation*}
\frac{r^{3}-r+1}{r(r+1)} \equiv r-1+\frac{1}{r}-\frac{1}{r+1}, \quad \text { for } r \neq 0,-1 \tag{3}
\end{equation*}
$$

(b) Find $\sum_{r=1}^{n} \frac{r^{3}-r+1}{r(r+1)}$, expressing your answer as a single fraction in its simplest form.
6. De Moivre's theorem states that

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta \text { for } n \in \mathbb{R} .
$$

(a) Use induction to prove de Moivre's theorem for $n \in \mathbb{Z}^{+}$.
(b) Show that

$$
\begin{equation*}
\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \tag{5}
\end{equation*}
$$

(c) Hence show that $2 \cos \frac{\pi}{10}$ is a root of the equation $x^{4}-5 x^{2}+5=0$.

