BHASVIC MaTHS

A2 Doubles summer assignment 4

Section: FP1

(14 questions this week as it is half term)

Past

1. Show that

$$
\int_{0}^{1} x^{2} e^{x} d x=e-2
$$

Show that the use of the trapezium rule with five strips (six ordinates) gives an estimate that is about 3.8\% too high.

Explain why approximate evaluation of this integral using the trapezium rule will always result in an overestimate, however many strips are used.
2. If

$$
I_{n}=\int_{0}^{1} t^{n} e^{-t} d t
$$

Where n is an integer, show that

$$
I_{0}=1-e^{-1}
$$

By integrating by parts, show that $I_{n}=n I_{n-1}-e^{-1}$ for $n \geq 1$. Hence evaluate I_{3}, leaving your answer in terms of e^{-1}
3. Find the area of the region between the negative x-axis and the graph $y=x \sqrt{x+1}$
a) Using integration by parts
b) Using substitution
4. Solve the following equations
a) $\sin (\theta+40)=0.7, \quad 0 \leq \theta \leq 360$
b) $3 \cos ^{2} \theta+5 \sin \theta-1=0,0 \leq \theta \leq 36-$
c) $2 \cos \left(\theta-\frac{\pi}{6}\right)=1, \quad \pi \leq \theta \leq p i$
5. Prove the following identities

$$
\begin{gathered}
\frac{1-\cos 2 \theta}{1+\cos 2 \theta} \equiv \tan ^{2} \theta \\
\operatorname{cosec} 2 \theta+\cot 2 \theta \equiv \cot \theta \\
\tan 4 \theta=\frac{4 t\left(1-t^{2}\right)}{1-6 t^{2}+t^{4}}, \quad \text { where } t=\tan \theta
\end{gathered}
$$

$\underline{\text { Present }}$

6. Points A and B have position vectors $O A=\left(\begin{array}{l}2 \\ 2 \\ 3\end{array}\right)$ and $O B=\left(\begin{array}{c}-1 \\ 7 \\ 2\end{array}\right)$. Find the acute angle between $A B$ and $O A$.
7. Four points are given with coordinates $A(2,-1,3), B(1,1,2), C(6,-1,2)$ and $D(7,-3,3)$. Find the angle between $A C$ and $B D$.
8. Four points have coordinates $A(2,4,1), B(k, 4,2 k), C(k+4,2 k+4,2 k+2)$ and $D(6,2 k+4,3)$
a) Show that $A B C D$ is a parallelogram
b) When $k=1$ find the angles of the parallelogram
c) Find the value of k for which $A B C D$ is a rectangle
9. Find in vector form, the equation of the planes which contain the point with position vector a and are perpendicular to the vector n.
a) $a=3 i+5 j-2 k, n=i+j+k$
b) $a=-3 i+2 j+k, n=1+j+k$
c) $a=3 i+5 j-2 k, n=-i-j-k$
d) $a=2 i+7 j-k, n=2 i+2 j+2 k$
10. Find, to 1 decimal place, the smaller angle between the planes
a) $r \cdot\left(\begin{array}{c}2 \\ 2 \\ -3\end{array}\right)=4$ and $r \cdot\left(\begin{array}{c}3 \\ -3 \\ -1\end{array}\right)=2$
b) $r \cdot\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=4$ and $r \cdot\left(\begin{array}{c}3 \\ -3 \\ -1\end{array}\right)=2$
c) $x+y-4 z=4$ and $5 x-2 y+3 z=13$
11. The plane Π_{1} has equation $-x+3 y-2 z-13=0$. Find the Cartesian and vector equations of the plane Π_{2} that is parallel to Π_{1} and passes through the point $(3,0,-4)$
12. Use calculus to find the shortest distance between the point $(1,5,-7)$ and the line with equation

$$
r=\left(\begin{array}{c}
-1 \\
9 \\
-5
\end{array}\right)+\lambda\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)
$$

13. Use calculus to find the shortest distance between the point $(-4,0,2)$ and the line with equation

$$
\frac{x+2}{-1}=\frac{y+2}{2}=\frac{z-1}{1}
$$

14. Use calculus to find the shortest distance between each pair of lines
a) $x=3, \frac{y+1}{6}=\frac{z}{2}$ and $r=\left(\begin{array}{c}-1 \\ 1 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)$
b) $r=\left(\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ and $x+5=2-y=z+1$
