PLEASE DO NOT WRITE ON THIS SHEET

A1 Doubles - Starting with Confidence Test version 2 – September 2019

- Attempt <u>ALL</u> questions.
- Do not use a calculator.
- Show working-out clearly and triple check for expensive errors.
- Time allowed: 40 minutes

1. Express the following as single fractions: (a)
$$\left(\frac{3}{2} \times \frac{1}{4}\right) + 3$$
 (b) $\frac{2}{x} + \frac{3}{x^2}$ (4)

2. Solve the equation
$$\frac{2x}{3} - \frac{x-2}{4} = 1$$
 for x. (3)

3. Evaluate the following: (a)
$$4^{\frac{5}{2}}$$
 (b) $16^{-\frac{7}{4}}$. (2)

4. (a) Write
$$\frac{2\sqrt{x}+4}{x^2}$$
 in the form $\alpha x^n + \beta x^m$. (3)

(b) Solve the equation
$$x^{-\frac{2}{3}} = 9$$
 for x . (3)

5. Simplify
$$\sqrt{20} + 2\sqrt{45} - 3\sqrt{80}$$
 as much as possible. (3)

6. Rationalise the denominator of
$$\frac{-7}{4\sqrt{5}}$$
, and hence write it in the form $b\sqrt{c}$. (2)

7. Rationalise the denominator of
$$\frac{5}{2-\sqrt{3}}$$
 and hence write it in the form $a+b\sqrt{c}$. (4)

8. Write down the discriminant of $4x - 3x^2 = -3$ and hence state whether the equation has zero roots, one repeated root or two distinct roots. (2)

9. Factorise the quadratic
$$9 - 4x^2$$
 using the difference of two squares (2)

10. Factorise the following:

(a)
$$3x^2 + 4x$$
 (b) $5x^2 - 13x - 6$ (2)

11. Solve
$$6x^2 - 5x - 6 = 0$$
 by factorising. (4)

12. Solve
$$2x^2 - 4x - 1 = 0$$

Leave your answer in the form $x = A \pm B\sqrt{C}$ (3)

Quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

13. Given $f(x) = x^2 + 5x + 10$:

a. Show that
$$y = f(x)$$
 can be written in the form $y = (x + a)^2 + b$ (2)

- **b.** Sketch $y = 2\left(f\left(x \frac{5}{2}\right)\right)$, showing clearly on your graph the minimum point.
- 14. Using the formula $y y_1 = m(x x_1)$, write the equation of the line passing through the points (-4, -1) and (6, 4) in the form ax + by + c = 0 where a, b, and c are integers. (3)
- 15. By listing these values in order, find the median (Q2), and lower (Q1) and upper (Q3) quartiles: 76, 56, 44, 77, 12, 1, 9.
- 16. Find an estimate of the mean of the following data, leaving your answer in any form:

Age of children (years)	Frequency	Mid value (x)	fx
	(<i>f</i>)		
0-2	4		
3-7	7		
8-10	14		
11-13	20		
14-18	5		

(3)

(3)

Total: 50 marks

END OF TEST

Question Number	Scheme test 2	Marks
1 (a)	$\frac{3}{8} + \frac{24}{8} = \frac{27}{8}$	M1 for common denominator A1 for correct and simplified fraction
(b)	$\frac{2x+3}{x^2} = \frac{8x-3(x-2)}{12} = 1$	M1 for a common denominator A1 for correct and simplified fraction
2	$\frac{8x - 3(x - 2)}{x^2} = 1$	M1 common denominator
		M1 multiply out and simplify
	$x = \frac{6}{5}$	A1 correct simplified fraction
3 (a)	$(4^{\frac{1}{2}})^5 = 2^5 = 32$	B1 cao
(b)	$(16^{\frac{1}{4}})^{-7} = 2^{-7} = \frac{1}{128}$	B1 cao
4 (a)	$\frac{2\sqrt{x}}{x^2} + \frac{4}{x^2} = 2x^{-\frac{3}{2}} + 4x^{-2}$	M1 for separating into two fractions A1 A1 correct co-effs and indices
(b)	$x^{-\frac{1}{3}} = \pm 3$ $x^{\frac{1}{3}} = \pm \frac{1}{3}$ $x = \pm \frac{1}{27}$ $2\sqrt{5} + 6\sqrt{5} - 12\sqrt{5} = -4\sqrt{5}$	M1 for evidence of dealing with the negative power (reciprocal) M1 for evidence of dealing with the fractional power (rooting or cubing) A1
5	$2\sqrt{5} + 6\sqrt{5} - 12\sqrt{5} = -4\sqrt{5}$	M1 evidence of common factor of $\sqrt{5}$ M1 evidence of rooting a perfect square A1
6	$\frac{-7}{4\sqrt{5}} \times \frac{(\sqrt{5})}{(\sqrt{5})} = -\frac{7\sqrt{5}}{20}$ $\frac{5}{(2-\sqrt{3})} \times \frac{(2+\sqrt{3})}{(2+\sqrt{3})} = \frac{5(2+\sqrt{3})}{4-3} = 10+5\sqrt{3}$	M1 multiply top and bottom by $k\sqrt{5}$ A1
7		M1 multiply top and bottom by correct bracket A1 correct denominator A1, A1
8	$(-4)^2 - 4(3)(-3) = 52$ \therefore +ve discrim. 2 distinct real roots	B1 for 52 B1ft their discriminant value
9	(3+2x)(3-2x)	M1 A1 correct attempt at factorising
10 (a)	$3x^2 + 4x = x(3x+4)$	B1 correct answer only
(b)	(5x+2)(x-3) (3x+2)(2x-3) = 0	B1 correct answer only
11	$(3x + 2)(2x - 3) = 0$ $x = -\frac{2}{3} \text{ or } x = \frac{3}{2}$	M1A1 correct attempt at factorising A1, A1
12	$x = \frac{4 + \sqrt{16 - 4(2)(-1)}}{4}$	M1 M1A1

		,
	$x = 1 \pm \frac{1}{2}\sqrt{6}$	
	Or	
	$x^{2} - 2x - \frac{1}{2} = 0$ $(x - 1)^{2} - \frac{3}{2} = 0$	M1
	_	M1
	$x = 1 \pm \sqrt{\frac{3}{2}}$	A1
13 (a)	$y = \left(x + \frac{5}{2}\right)^2 + \frac{15}{4}$	M1A1
(b)	Sketch min pt $(0, \frac{15}{2})$	B1 Any horizontal translation B1 Any vertical stretch B1 correct min pt
14	$min pt (0, \frac{15}{2})$ $grad = \frac{1}{2}$	M1 A1 gradient
	x - 2y + 2 = 0	A1
15	Median=44	B1 for median
	LQ=9, UQ=76	B1 for both quartiles
16	Eg. 1x4=4	M1 for fx calculation seen
	$Mean = \frac{485}{50} = \frac{97}{10} = 9.7$	M1 for dividing by their total
		A1 any form