A1 Doubles - Starting with Confidence Test version 2 - September 2019

- Attempt ALL questions.
- Do not use a calculator.
- Show working-out clearly and triple check for expensive errors.
- Time allowed: 40 minutes

1. Express the following as single fractions:
(a) $\left(\frac{3}{2} \times \frac{1}{4}\right)+3$
(b) $\frac{2}{x}+\frac{3}{x^{2}}$
2. Solve the equation $\frac{2 x}{3}-\frac{x-2}{4}=1$ for x.
3. Evaluate the following:
(a) $4^{\frac{5}{2}}$
(b) $16^{-\frac{7}{4}}$.
4. (a) Write $\frac{2 \sqrt{x}+4}{x^{2}}$ in the form $\alpha x^{n}+\beta x^{m}$.
(b) Solve the equation $x^{-\frac{2}{3}}=9$ for x.
5. Simplify $\sqrt{20}+2 \sqrt{45}-3 \sqrt{80}$ as much as possible.
6. Rationalise the denominator of $\frac{-7}{4 \sqrt{5}}$, and hence write it in the form $b \sqrt{c}$.
7. Rationalise the denominator of $\frac{5}{2-\sqrt{3}}$ and hence write it in the form $a+b \sqrt{c}$.
8. Write down the discriminant of $4 x-3 x^{2}=-3$ and hence state whether the equation has zero roots, one repeated root or two distinct roots.
9. Factorise the quadratic $9-4 x^{2}$ using the difference of two squares
10. Factorise the following:
(a) $3 x^{2}+4 x$
(b) $5 x^{2}-13 x-6$
11. Solve $6 x^{2}-5 x-6=0$ by factorising.
12. Solve $2 x^{2}-4 x-1=0$

Leave your answer in the form $x=A \pm B \sqrt{C}$

Quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

13. Given $f(x)=x^{2}+5 x+10$:
a. Show that $y=f(x)$ can be written in the form $y=(x+a)^{2}+b$
(2)
b. Sketch $y=2\left(f\left(x-\frac{5}{2}\right)\right)$, showing clearly on your graph the minimum point.
14. Using the formula $y-y_{1}=m\left(x-x_{1}\right)$, write the equation of the line passing through the points $(-4,-1)$ and $(6,4)$ in the form $a x+b y+c=0$ where a, b, and c are integers.
15. By listing these values in order, find the median $(\mathrm{Q} 2)$, and lower $(\mathrm{Q} 1)$ and upper (Q3) quartiles: $76,56,44,77,12,1,9$.
16. Find an estimate of the mean of the following data, leaving your answer in any form:

Age of children (years)	Frequency (f)	Mid value (x)	$f x$
$0-2$	4		
$3-7$	7		
$8-10$	14		
$11-13$	20		
$14-18$	5		

Total: 50 marks

Question Number	Scheme test 2	Marks
1 (a) (b)	$\begin{aligned} & \frac{3}{8}+\frac{24}{8}=\frac{27}{8} \\ & \frac{2 x+3}{x^{2}} \end{aligned}$	M1 for common denominator A1 for correct and simplified fraction M1 for a common denominator A1 for correct and simplified fraction
2	$\begin{aligned} & \frac{8 x-3(x-2))}{12}=1 \\ & 8 \mathrm{x}-3 \mathrm{x}+6=12 \\ & 5 \mathrm{x}=6 \\ & x=\frac{6}{5} \end{aligned}$	M1 common denominator M1 multiply out and simplify A1 correct simplified fraction
3 (a) (b)	$\begin{aligned} & \left(4^{\frac{1}{2}}\right)^{5}=2^{5}=32 \\ & \left(16^{\frac{1}{4}}\right)^{-7}=2^{-7}=\frac{1}{128} \end{aligned}$	B1 cao B1 cao
4 (a) (b)	$\begin{aligned} & \frac{2 \sqrt{x}}{x^{2}}+\frac{4}{x^{2}}=2 x^{-\frac{3}{2}}+4 x^{-2} \\ & x^{-\frac{1}{3}}= \pm 3 \\ & x^{\frac{1}{3}}= \pm \frac{1}{3} \\ & x= \pm \frac{1}{27} \end{aligned}$	M1 for separating into two fractions A1 A1 correct co-effs and indices M1 for evidence of dealing with the negative power (reciprocal) M1 for evidence of dealing with the fractional power (rooting or cubing) A1
5	$2 \sqrt{5}+6 \sqrt{5}-12 \sqrt{5}=-4 \sqrt{5}$	M1 evidence of common factor of $\sqrt{5}$ M1 evidence of rooting a perfect square A1
6	$\frac{-7}{4 \sqrt{5}} \times \frac{(\sqrt{5})}{(\sqrt{5})}=-\frac{7 \sqrt{5}}{20}$	$\begin{aligned} & \text { M1 multiply top and bottom by } k \sqrt{5} \\ & \text { A1 } \end{aligned}$
7	$\frac{5}{(2-\sqrt{3})} \times \frac{(2+\sqrt{3})}{(2+\sqrt{3})}=\frac{5(2+\sqrt{3})}{4-3}=10+5 \sqrt{3}$	M1 multiply top and bottom by correct bracket A1 correct denominator A1 , A1
8	$(-4)^{2}-4(3)(-3)=\mathbf{5 2}$ $\therefore+$ ve discrim. 2 distinct real roots	B1 for 52 B1ft their discriminant value
9	$(3+2 x)(3-2 x)$	M1 A1 correct attempt at factorising
$10 \text { (a) }$ (b)	$\begin{aligned} & 3 x^{2}+4 x=x(3 x+4) \\ & (5 x+2)(x-3) \end{aligned}$	B1 correct answer only B1 correct answer only
11	$\begin{aligned} & (3 \mathrm{x}+2)(2 \mathrm{x}-3)=0 \\ & x=-\frac{2}{3} \text { or } \quad x=\frac{3}{2} \end{aligned}$	M1A1 correct attempt at factorising $\mathrm{A} 1, \mathrm{~A} 1$
12	$x=\frac{4+\sqrt{16-4(2)(-1)}}{4}$	M1 M1A1

	$\text { Or } \begin{gathered} x=1 \pm \frac{1}{2} \sqrt{6} \\ x^{2}-2 x-\frac{1}{2}=0 \\ (x-1)^{2}-\frac{3}{2}=0 \\ x=1 \pm \sqrt{\frac{3}{2}} \end{gathered}$	M1 M1 A1
$13 \text { (a) }$ (b)	$y=\left(x+\frac{5}{2}\right)^{2}+\frac{15}{4}$ Sketch $\min \mathrm{pt}\left(0, \frac{15}{2}\right)$	M1A1 B1 Any horizontal translation B1 Any vertical stretch B1 correct min pt
14	$\begin{aligned} & \mathrm{grad}=\frac{1}{2} \\ & x-2 y+2=0 \end{aligned}$	M1 A1 gradient A1
15	$\begin{array}{\|l} \hline \text { Median=44 } \\ \mathrm{LQ}=9, \mathrm{UQ}=76 \\ \hline \end{array}$	B1 for median B1 for both quartiles
16	Eg. $1 \times 4=4$ Mean $=\frac{485}{50}=\frac{97}{10}=9.7$	M1 for fx calculation seen M1 for dividing by their total A1 any form

