A1 Doubles - Starting with Confidence Test version 1 - September 2019

- Attempt ALL questions.
- Do not use a calculator.
- Show working-out clearly and triple check for expensive errors.
- Time allowed: 40 minutes.

1. Express the following as a single fraction: (a) $\left(\frac{12}{11}-\frac{4}{3}\right) \div \frac{1}{3}$
(b) $\frac{5}{x}+\frac{2 x}{5}$
2. Solve the equation $\frac{x+1}{3}+\frac{4 x}{12}=8$ for x.
3. Evaluate the following: (a) $9^{-\frac{1}{2}} \quad$ (b) $32^{-\frac{3}{5}}$
4. (a) Write $\frac{(1-4 \sqrt{x})}{x}$ in the form $\alpha x^{n}+\beta x^{m}$.
(b) Solve the equation $x^{-\frac{2}{3}}=25$ for x.
5. Simplify $\sqrt{200}+\sqrt{18}-2 \sqrt{72}$ as much as possible.
6. Rationalise the denominator of $\frac{\sqrt{2}}{3 \sqrt{3}}$, and hence write it in the form $b \sqrt{c}$.
7. Rationalise the denominator of $\frac{4}{\sqrt{3}-1}$ and hence write it in the form $a+b \sqrt{c}$.
8. Write down the discriminant of $2 x=2 x^{2}+5$ and hence state whether the equation has zero roots, one repeated root or two distinct roots.
9. Factorise the quadratic $49-9 x^{2}$ using the difference of two squares.
10. Factorise the following:
(a) $2 x^{2}+6 x$
(b) $2 x^{2}+5 x+2$.
(2)
11. Solve $4 x^{2}-16 x+15=0$ by factorising.
12. Solve $2 x^{2}+4 x+1=0$

Leave your answer in the form $x=A \pm B \sqrt{C}$.

$$
\begin{aligned}
& \text { Quadratic formula: } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

13. Given $f(x)=x^{2}+3 x+5$:
a. Show that $y=f(x)$ can be written in the form $y=(x+a)^{2}+b$
b. Sketch $y=2\left(f\left(x-\frac{3}{2}\right)\right)$, showing clearly on your graph the minimum point.
14. Using the formula $y-y_{1}=m\left(x-x_{1}\right)$, write the equation of the line passing through the points $(5,-3)$ and $(7,5)$ in the form $a x+b y+c=0$ where a, b, and c are integers.
15. By listing these values in order, find the median (Q2), and lower (Q1) and upper (Q3) quartiles: $3,7,1,40,5,9,2,9$.
16. Find an estimate of the mean of the following data, leaving your answer in any form:

Age of children (years)	Frequency (f)	Mid value (x)	$f x$
$0-2$	4		
$3-7$	7		
$8-10$	14		
$11-13$	20		
$14-18$	5		

Total: 50 marks

Question Number	Scheme test 1	Marks
1 (a) (b)	$\begin{aligned} & \frac{36-44}{33} \div \frac{1}{3}=\frac{-8}{33} \times 3=\frac{-8}{11} \\ & \frac{25+2 x^{2}}{5 x} \end{aligned}$	M1 for common denominator A1 for correct and simplified fraction M1 for a common denominator A1 for correct and simplified fraction
2	$\begin{aligned} & \frac{12(x+1)+12 x}{36}=8 \\ & 24 x+12=288 \\ & x=\frac{23}{2} \end{aligned}$	M1 common denominator M1 multiply out and simplify A1 correct simplified fraction
$3 \text { (a) }$ (b)	$\begin{aligned} & \frac{1}{3} \\ & 2^{-3}=\frac{1}{8} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$
4 (a) (b)	$\begin{aligned} & \frac{1}{x}-\frac{4 x^{\frac{1}{2}}}{x} \\ & x^{-1}-4 x^{-\frac{1}{2}} \\ & x^{\frac{1}{3}}= \pm \frac{1}{5} \\ & x= \pm \frac{1}{125} \end{aligned}$	M1 for separating into two fractions A1 A1 correct co-effs and indices M1 for evidence of dealing with the negative power (reciprocal) M1 for evidence of dealing with the fractional power (rooting or cubing) A1
5	$\begin{aligned} & \sqrt{200}+\sqrt{18}-2 \sqrt{72} \\ & =\sqrt{100} \sqrt{2}+\sqrt{9} \sqrt{2}-2 \sqrt{36} \sqrt{2} \\ & =10 \sqrt{2}+3 \sqrt{2}-12 \sqrt{2} \\ & =\sqrt{2} \end{aligned}$	M1 evidence of common factor of root 2 M1 evidence of rooting a perfect square A1
6	$\frac{\sqrt{2}}{3 \sqrt{3}}=\frac{\sqrt{2} \sqrt{3}}{3 \sqrt{3} \sqrt{3}}=\frac{\sqrt{6}}{9}=\frac{1}{9} \sqrt{6}$	M1 multiply top and bottom by $k \sqrt{3}$ A1
7	$\begin{aligned} & \frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1))} \\ & \frac{4(\sqrt{3}+1))}{3-1} \\ & 2+2 \sqrt{3} \end{aligned}$	M1 multiply top and bottom by correct bracket A1 correct denominator A1, A1
8	$(-2)^{2}-4(2)(5)=-36$ \therefore no real roots or zero real roots	B1 for -36 B1ft their discriminant value
9	$(7-3 x)(7+3 x)$	M1 A1correct attempt at factorising
10 (a)	$2 x^{2}+6 x=2 x(x+3)$	B1 correct answer only

(b)	$2 x^{2}+5 x+2=(2 x+1)(x+2)$	B1 correct answer only
11	$\begin{aligned} & (2 \mathrm{x}-5)(2 \mathrm{x}-3)=0 \\ & 2 \mathrm{x}-5=0 \text { or } 2 \mathrm{x}-3=0 \\ & x=\frac{5}{2} \text { or } \quad x=\frac{3}{2} \end{aligned}$	M1A1 correct attempt at factorising $\mathrm{A} 1, \mathrm{~A} 1$
12	$\begin{aligned} & 2 x^{2}+4 x+1=0 \\ & x=\frac{-4 \pm \sqrt{(4)^{7}-4(2)(1)}}{4} \\ & =-\frac{4}{4} \pm \frac{\sqrt{8}}{4} \\ & =-1 \pm \frac{1}{4} \sqrt{4} \sqrt{2} \\ & =-1 \pm \frac{1}{2} \sqrt{2} \end{aligned}$ Or $\begin{gathered} x^{2}+2 x+\frac{1}{2}=0 \\ (x+1)^{2}-\frac{1}{2}=0 \\ x=-1 \pm \sqrt{\frac{1}{2}} \end{gathered}$	M1 A1 for substituting into formula A1 M1 M1 A1
$13 \text { (a) }$ (b)	$f(x)=\left(x+\frac{3}{2}\right)^{2}+\frac{11}{4}$ sketch $\min \mathrm{pt}(0,5.5)$	M1A1 B1 Any horizontal translation B1 Any vertical stretch B1 correct min pt
14	$\begin{aligned} & \operatorname{grad}=4 \\ & 4 x-y-23=0 \end{aligned}$	M1 A1 gradient A1
15	$\begin{aligned} & \hline \text { Median=6 } \\ & \mathrm{LQ}=2.5, \mathrm{UQ}=9 \end{aligned}$	B1 for median B1 for both quartiles
16	Eg. $1 \mathrm{x} 4=4$ Mean $=\frac{485}{50}=\frac{97}{10}=9.7$	M1 for fx calculation seen M1 for dividing by their total A1 any form

