*****PLEASE DO NOT WRITE ON THIS SHEET*****

A1 Doubles - Starting with Confidence Test version 1 – September 2019

- Attempt <u>ALL</u> questions.
- Do not use a calculator.
- Show working-out clearly and triple check for expensive errors.
- Time allowed: 40 minutes.

1. Express the following as a single fraction: (a)
$$\left(\frac{12}{11} - \frac{4}{3}\right) \div \frac{1}{3}$$
 (b) $\frac{5}{x} + \frac{2x}{5}$ (4)

2. Solve the equation
$$\frac{x+1}{3} + \frac{4x}{12} = 8$$
 for x. (3)

3. Evaluate the following: (a) $9^{-\frac{1}{2}}$ (b) $32^{-\frac{3}{5}}$ (2)

4. (a) Write
$$\frac{(1-4\sqrt{x})}{x}$$
 in the form $\alpha x^n + \beta x^m$. (3)

(b) Solve the equation
$$x^{-\frac{2}{3}} = 25$$
 for x. (3)

5. Simplify $\sqrt{200} + \sqrt{18} - 2\sqrt{72}$ as much as possible. (3)

6. Rationalise the denominator of
$$\frac{\sqrt{2}}{3\sqrt{3}}$$
, and hence write it in the form $b\sqrt{c}$. (2)

7. Rationalise the denominator of
$$\frac{4}{\sqrt{3}-1}$$
 and hence write it in the form $a + b\sqrt{c}$. (4)

- 8. Write down the discriminant of $2x = 2x^2 + 5$ and hence state whether the equation has zero roots, one repeated root or two distinct roots. (2)
- 9. Factorise the quadratic $49 9x^2$ using the difference of two squares. (2)

10. Factorise the following: (a) $2x^2 + 6x$ (b) $2x^2 + 5x + 2$. (2)

(4)

11. Solve $4x^2 - 16x + 15 = 0$ by factorising.

*****PLEASE TURN OVER*****

12. Solve $2x^2 + 4x + 1 = 0$

Leave your answer in the form $x = A \pm B\sqrt{C}$.

- 13. Given $f(x) = x^2 + 3x + 5$:
 - a. Show that y = f(x) can be written in the form $y = (x + a)^2 + b$ (2)
 - b. Sketch $y = 2\left(f\left(x \frac{3}{2}\right)\right)$, showing clearly on your graph the minimum point. (3)
- 14. Using the formula $y y_1 = m(x x_1)$, write the equation of the line passing through the points (5, -3) and (7,5) in the form ax + by + c = 0 where *a*, *b*, and *c* are integers. (3)
- 15. By listing these values in order, find the median (Q2), and lower (Q1) and upper (Q3) quartiles:
 3, 7, 1, 40, 5, 9, 2, 9. (2)
 - 16. Find an estimate of the mean of the following data, leaving your answer in any form:

Age of children (years)	Frequency	Mid value (x)	fx
	(f)		
0-2	4		
3-7	7		
8-10	14		
11-13	20		
14-18	5		

(3)

Total: 50 marks

END OF TEST

Question	Scheme test 1	Marks
$\frac{1}{1}$ (a)	$36 - 44 \cdot 1 - \frac{-8}{-8} \times 3 - \frac{-8}{-8}$	M1 for common denominator
	$\frac{-33}{33} \div \frac{-3}{3} = \frac{-33}{33} \times 3 = \frac{-11}{11}$	A1 for correct and simplified fraction
(b)	$\frac{25+2x^2}{2x^2}$	M1 for a common denominator
	5x	A1 for correct and simplified fraction
2	12(x+1) + 12x = 8	M1 common denominator
	36 = 0	M1 multiply out and simplify
	24x + 12 = 288	A1 correct simplified fraction
	$x = \frac{23}{2}$	
3 (a)	1	B1
	3	B1
(b)	$2^{-3} = \frac{1}{8}$	
4 (a)	$1 4x^{\frac{1}{2}}$	M1 for separating into two fractions
	$\frac{1}{x}$ $\frac{1}{x}$	A1 A1 correct co-effs and indices
	$x^{-1} - 4x^{-\frac{1}{2}}$	
(b)		M1 for evidence of dealing with the
	$x^{\frac{1}{3}} = \pm \frac{1}{2}$	M1 for evidence of dealing with the
	5	fractional power (rooting or cubing)
	$x = \pm \frac{1}{125}$	AI
5	$\sqrt{200} + \sqrt{18} - 2\sqrt{72}$	
	$=\sqrt{100}\sqrt{2}+\sqrt{9}\sqrt{2}-2\sqrt{36}\sqrt{2}$	M1 evidence of common factor of root 2
	$=10\sqrt{2}+3\sqrt{2}-12\sqrt{2}$	M1 evidence of rooting a perfect square
	$=\sqrt{2}$	A1
6	$\sqrt{2}$ $\sqrt{2}\sqrt{3}$ $\sqrt{6}$ 1 $\sqrt{2}$	M1 multiply top and bottom by $k\sqrt{3}$
	$\frac{1}{3\sqrt{3}} = \frac{1}{3\sqrt{3}\sqrt{3}} = \frac{1}{9} = \frac{1}{9}\sqrt{6}$	A1
7	$4(\sqrt{3}+1)$	M1 multiply top and bottom by correct
	$(\sqrt{3}-1)(\sqrt{3}+1))$	bracket
	$4(\sqrt{3}+1))$	A1 correct denominator
	3-1	A1 , A1
	$2+2\sqrt{3}$	
8	$(-2)^2 - 4(2)(5) = -36$	B1 for -36
	i no real roots or zero real roots	Blft their discriminant value
9	(7-3x)(7+3x)	M1 A1correct attempt at factorising
10 (a)	$2x^2 + 6x = 2x(x+3)$	B1 correct answer only

(b)		B1 correct answer only
	$2x^2 + 5x + 2 = (2x+1)(x+2)$	
11	(2x-5)(2x-3)=0	M1A1 correct attempt at factorising
	2x-5=0 or 2x-3=0	
	$x = \frac{5}{2} \operatorname{or} x = \frac{3}{2}$	A1, A1
12	$2r^2 + 4r + 1 = 0$	
	$-4 + \sqrt{(4)^7 - 4(2)(1)}$	M1 A1 for substituting into formula
	$x = \frac{4 \pm \sqrt{(4)^2 + (2)(1)}}{4}$	
	$=-\frac{4}{4}\pm\frac{\sqrt{8}}{4}$	
	$=-1\pm\frac{1}{4}\sqrt{4}\sqrt{2}$	
	$=-1\pm\frac{1}{2}\sqrt{2}$	A1
	Or	
	$x^2 + 2x + \frac{1}{2} = 0$	M1
	$(x+1)^2 - \frac{1}{2} = 0$	M1
	$x = -1 \pm \sqrt{\frac{1}{2}}$	A1
	ν ²	
13 (a)	$f(x) = \left(x + \frac{3}{2}\right)^2 + \frac{11}{4}$	M1A1
(b)		B1 Any horizontal translation
	sketch	B1 Any vertical stretch B1 correct min pt
14	min pt (0, 5.5)	M1 A1 gradient
14	$y_{x-y-23=0}$	
15	Ar-y-23=0 Median=6	B1 for median
10	LO=2.5, UO=9	B1 for both quartiles
16	Eg. 1x4=4	M1 for fx calculation seen
	Mean= $\frac{485}{2} = \frac{97}{2} = 97$	M1 for dividing by their total
	50 - 10 - 50	A1 any form