A1 DOUBLES ASSIGNMENT 22 - PART B

SKILLS 1

Find particular solutions to the following differential equations using the given boundary conditions.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sin x \cos ^{2} x ; y=0, x=\frac{\pi}{3}$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sec ^{2} x \sec ^{2} y ; y=0, x=\frac{\pi}{4}$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \cos ^{2} y \cos ^{2} x ; y=\frac{\pi}{4}, x=0$
d $\sin y \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\cos y}{\cos x}, y=0, x=0$

SKILLS 2

Integrate the following with respect to x :
(a) $\int \frac{\sec ^{2} x}{(1+\tan x)^{3}} d x$
(b) $\int 2 \sin x \cos ^{3} x d x$
(c) $\int \frac{x}{\left(1-x^{2}\right)^{5}} d x$

PROBLEM SOLVING

1. Graph Transformations

The graph shown is the curve of $y=f(x)$. The curve crosses the x axis at $A\left(\frac{8}{5}, 0\right)$ and $B\left(\frac{16}{5}, 0\right)$ and has a turning point at $Q\left(\frac{7}{2},-3\right)$

Sketch, showing the new coordinates of A, B and C : (a)) $f(2 x)$ (b) $3 f(x)$ (c) $f(x)+3$
2. Forces and Newton's laws: single particles slopes

A 6 N weight rests on a rough 25° incline. The perpendicular reaction is measured to be 10 N .
A horizontal force H pushes the weight so that it is just on the point of slipping up the plane.
(a) Complete a force diagram
(b) Find the force H
(c) Find μ, the coefficient of friction.
(d) Force H is now removed. Showing all your calculations clearly, justify whether the 6 N weight will slide down the plane, or remain in equilibrium.

3. Newton's Laws. Connected Particles

A train engine of mass 6400 kg is pulling a carriage of mass 1600 kg along a straight horizontal railway track. The engine is connected to the carriage by a shunt which is parallel to the direction of motion of the coupling. The shunt is modelled as a light rod. The engine provides a constant driving force of 12000 N . The resistances to the motion of the engine and the carriage are modelled as constant forces of magnitude R N and 2000N respectively.

Given that the acceleration of the engine and the carriage is $0.5 \mathrm{~ms}^{-2}$.
(a) find the value of R
(b) show that the tension in the shunt is 2800 N
4. Kinematics. Variable Acceleration.

A particle P of mass 0.5 kg moves under the action of a single force \mathbf{F} Newtons. At time t seconds, the velocity $\mathbf{v ~ \mathrm { m } \mathrm { s } ^ { - 1 }}$ of P is given by;

$$
\mathbf{v}=3 t^{2} \mathbf{i}+(1-4 t) \mathbf{j} .
$$

Find;
(a) the acceleration of P at time t seconds,
(b) the magnitude of \mathbf{F} when $t=2$.

5.
 Moments

When a rigid body is in equilibrium, then:
A) There is zero resultant force in any direction
B) The sum of the moments about any point is zero

Firstly, always draw a complete and clear force diagram.
For a 2-D horizontal see-saw / bridge problem, two equations to solve:
force up = force down, anticlockwise moments = clockwise moments
For a 3-D ladder problem, three equations to solve:
force up = force down, forces left = forces right, anticlockwise moments = clockwise moments

A ladder $A B$, of mass m and length $3 a$, has one end A resting on rough horizontal ground. The other end B rests against a smooth vertical wall. A load of mass $2 m$ is fixed on the ladder at the point C, where $A C=a$. The ladder is modelled as a uniform rod in a vertical plane perpendicular to the wall and the load is modelled as a particle. The ladder rests in limiting equilibrium at an angle of 60° with the ground.
Find the coefficient of friction between the ladder and the ground.

For the above problem, draw a complete and clear force diagram, including $\mathrm{F}_{\max }$ and R at A , perpendicular reaction S at B, the weight of the ladder, and the weight of the load at C. Friction is limiting so you can use $F_{\max }=\mu R$
You can take moments about any point you like. Point A is easy then the equation will not have $\mathrm{F}_{\text {max }}$ or R .
However, you can take moments about a point not even on the ladder - if you choose the point where R and S intersect, these forces will not then be in the equation, and you can find $\mathrm{F}_{\text {max }}$ directly.
Construct three equations, then solve to find the coefficient of friction.
6. Projectiles \& equations of flight paths

A golf ball is driven from a point A with a speed of $40 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of elevation of 30°. On its downward flight, the ball hits an advertising hoarding at a height 15.1 m above the level of A, as shown in the diagram above. Find
a) the time taken by the ball to reach its greatest height above A,
b) the time taken by the ball to travel from A to B,
c) the speed with which the ball hits the hoarding.

7. Mechanics Vectors

[In this question, the unit vectors \mathbf{i} and \mathbf{j} are horizontal vectors due east and north respectively.]

At time $t=0$, a football player kicks a ball from the point A with position vector ($2 \mathbf{i}+$ j) m on a horizontal football field. The motion of the ball is modelled as that of a particle moving horizontally with constant velocity $(5 \mathbf{i}+8 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$. Find
(a) the speed of the ball,
(b) the position vector of the ball after t seconds.

The point B on the field has position vector $(10 \mathbf{i}+7 \mathbf{j}) \mathrm{m}$.
(c) Find the time when the ball is due east of B.
(d) Find the time when the ball is due north of B.
8. Differentiation - proof of sinx and cosx derivatives from 1st principles Use first principles to show that the derivative of $\operatorname{cosec} \mathrm{x}$ is $-\operatorname{cosec} \mathrm{x} \cot \mathrm{x}$.
9. Differentiation Techniques: chain, product, quotient rules inc $\mathrm{e}^{\wedge} \mathrm{x}$ and $\ln \mathrm{x}$ and trig derivatives and dx/dy problems

The variables x, y and z satisfy the following relationships:
$x=\ln (z+1)$ and $\frac{d^{2} y}{d z^{2}}=\frac{y}{e^{2 x}}$
Show that $\frac{d^{2} y}{d x^{2}}=\frac{d y}{d x}+y$
10. A curve C has parametric equations

$$
x=6 \cos 2 t, \quad y=2 \sin t, \quad-\frac{\pi}{2}<t<\frac{\pi}{2}
$$

(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\lambda \operatorname{cosec} t$, giving the exact value of the constant λ.
(b) Find an equation of the normal to C at the point where $t=\frac{\pi}{3}$

Give your answer in the form $y=m x+c$, where m and c are simplified surds.
The cartesian equation for the curve C can be written in the form

$$
x=\mathrm{f}(y), \quad-k<y<k
$$

where $\mathrm{f}(y)$ is a polynomial in y and k is a constant.
(c) Find $\mathrm{f}(\mathrm{y})$
(d) State the value of k.
11. Definite Integration

The figure above shows the graph of the curve with equation

$$
y=x \sqrt{1-2 x}, \quad x \leq \frac{1}{2}
$$

Use integration by parts and reverse chain rule to find the area of the finite region bounded by the curve and the x axis.
12.
$\mathrm{f}(x)=\frac{5 x^{2}-8 x+1}{2 x(x-1)^{2}}$
a Given that $\mathrm{f}(x)=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$, find the values of the constants A, B and C.
b Hence find $\int \mathrm{f}(x) \mathrm{d} x$.
c Hence show that $\int_{4}^{9} \mathrm{f}(x) \mathrm{d} x=\ln \left(\frac{32}{3}\right)-\frac{5}{24}$

