Skills 1

Integrate the following

- (a) $\int (4x+5) \, dx$
- (b) $\int x(x-1) dx$
- (c) $\int x^{-1}(x-x^2) dx$
- (d) $\int (x+1)^2 dx$
- (e) $\int (2-x)^2 dx$

(f)
$$\int \left(x - \frac{1}{x}\right)^2 dx$$

TAP FOR ANSWERS

Skills 2

Evaluate the following definite integrals:

(a) $\int_{1}^{2} \left(\frac{2}{x^{3}} + 3x \right) dx$ (b) $\int_0^2 (2x^3 - 4x + 5) dx$ (c) $\int_4^9 \left(\sqrt{x} - \frac{6}{x^2}\right) dx$ (d) $\int_{1}^{8} \left(x^{-\frac{1}{3}} + 2x - 1 \right) dx$ (e) $\int_{1}^{3} \frac{x^3 + 2x^2}{r} dx$ (f) $\int_{3}^{6} \left(x - \frac{3}{x}\right)^{2} dx$ (g) $\int_0^1 x^2 \left(\sqrt{x} + \frac{1}{x}\right) dx$ (h) $\int_{1}^{4} \frac{2 + \sqrt{x}}{x^2} dx$

TAP FOR ANSWERS

Skills 1 - Answers

TAP TO RETURN

Skills 2 – Answers

((a) $5\frac{1}{4}$	
((b) 10	
((c) $11\frac{5}{6}$	_
((d) $60\frac{1}{2}$	AP IC
((e) $16\frac{2}{3}$	
((f) $46\frac{1}{2}$	ORN
($(g) \frac{11}{14}$	
((h) $2\frac{1}{2}$	

Lynn if selling cushions as part of an enterprise project. On her first attempt, she sold 80 cushions at the cost of £15 each. She hopes to sell more cushions next time. Her adviser suggests that she can expect to sell 10 more cushions for every £1 that she lowers the price.

(a) the number of cushions sold *c* can be modelled by the equation c = 230 - Hp, where $\pounds p$ is the price of each cushion and *H* is a constant. Determine the value of *H*.

To model her total revenue, $\pounds r$, Lynn multiplies the number of cushions sold by the price of each cushion. She writes this as r = p(230 - Hp).

(b) Rearrange *r* into the form $A - B(p - C)^2$, where *A*, *B* and *C* are constants to be found.

(c) Using your answer to part b or otherwise, show that Lynn can increase her revenue by £122.50 through lowering her prices, and state the optimum selling price of a cushion.

2

The graph of $y = x^4 + bx^3 + cx^2 + dx + e$ is shown where *b*, *c*, *d* and *e* are real constants

(a) Find the coordinates of the y intercept

(b) Find the values of *b*, *c*, *d* and *e*

3

(a) Find the equation of the line l, which goes through the point P(5, 9) and has gradient 2.

(b) The circle *C* has equation . Show that *l* is a tangent to *C*. A line is a tangent to a circle if it touches it once only (rather than intersecting it twice or not touching it at all).

(c) Find, as a surd, the length from P to the point where l touches the circle.

4

(a)(i) Write down the resolved part of the force F in the direction Ox.

(ii) Write down the resolved part of the force F in the direction Oy. $\frac{Y}{Y}$

A toboggan of mass 20 kg is pulled, with a rope, up a slope inclined at 15° to the horizontal. The rope is inclined at an angle of 15° to the slope, and the tension in the rope is 70 N.

Given that the toboggan is moving at constant speed:

(b)(i) Find the frictional force *F*.

(ii) Find the normal reaction *R*.

(iii) Find the coefficient of friction.

F

Х

5

A particle of weight W is attached to the end B of a light string AB which is fixed at A. The string is inclined at 30° to the vertical by a force of magnitude P as shown. Find the value of P when W is: (a) $2\sqrt{3}$ N (b) $\sqrt{48}$ N (c) $\sqrt{300}$ N

TAP FOR ANSWERS

6

A truck of mass 800 kg is towing a car of mass 500 kg The engine of the truck is exerting a pulling force of magnitude P N. The total resistance on the truck is1200N, and on the car 750N. Find the acceleration of the system and the tension in the tow rope when P is;

(a) 2000N

(b) 5000 N

(c) 8000N

Hint: Draw a diagram and consider the truck and car separately.

7

A scalene triangle has the coordinates (2, 0, 0), (5, 0, 0) and (4, 2, 3). Work out the area of the triangle.

8

A rectangular box, with no top, is made from thin card. The volume of the box is 500 cm^3 . The base of the box is a square with sides of length *x* cm.

(a) Show that the area, $A \text{ cm}^2$, of card used to make such an open box is given by $A = x^2 + \frac{2000}{x}$.

(b) find the minimum amount of card needed to make this box

9

The curve C has the equation $y = 3 - x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}, x > 0$.

(a) Find the coordinates of the points where C crosses the x-axis.

(b) Find the exact coordinates of the stationary point of C.

(c) Determine the nature of the stationary point.

(d) Sketch the curve *C*.

10

$$\frac{dy}{dx} = 3x^{-\frac{1}{2}} - 2x\sqrt{x}, x > 0$$

Given that y = 10 at x = 4, find y in terms of x, giving each term in its simplest form.

11

The region *R* is bounded by the curve $y = x^2 + 2$, the *x* and *y* axis and the normal to the curve at the point (2,6).

- (a) Sketch the curve $y = x^2 + 2$
- (b) Find the equation of the normal
- (c) Find the area of R.

12

Evaluate the following

$$\lim_{\delta x \to 0} \sum_{x=\frac{1}{2}}^{1} \frac{4-x}{2x^{3}} dx$$

TAP FOR ANSWERS

1 - Answers

(a) H = 10

(b) $r = 1322.5 - 10(p - 11.5)^2$ A = 1322.5, B = 10, C = 11.5

(c) Old revenue is $80 \times \pounds 15 = \pounds 1200$; new revenue is £1322.50; different is $\pounds 122.50$. The best selling price of a cushion is £11.50.

2 - Answers

(a) (0,12)

3 - Answers

(a) 2x - y - 1 = 0

(c) $3\sqrt{5}$

TAP TO RETURN

4 - Answers

(a) (i) $Fcos\theta$

(ii) $Fsin\theta$

(b) (i) 16.9 N

(ii) 171N (3sf)

(iii) µ=0.099

5 - Answers

(a) 2N	
(b) 4N	
(c) 10N	TAP
	TO RETUR
	Ĩ

6 - Answers

(a) 0.038 ms⁻², 769N

(b) 2.35 ms⁻², 1925N

(c) 4.65 ms⁻², 3075N

7 - Answers

8 - Answers

(a) 300cm²

9 - Answers

- (a) (1, 0) and (4,0)
- (b) $(2, 3 2\sqrt{2})$
- (c) maximum (need to give a reason)

TAP TO RETURN

10 - Answers

11 - Answers

(b) x + 4y - 26 = 0

 $(c)\frac{78}{3}$

TAP TO RETURN

12 - Answers

