BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

Skills 1

Find the stationary points of the following functions. Justify whether they are maxima or minima
(a) $y=x^{3}-x^{2}-x+1$
(b) $y=x+\frac{1}{x}$
(c) $y=x^{2}+\frac{54}{x}$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

Skills 2

(Hint: a sketch helps in these questions)
(a) Find the set of values of x for which the curve with equation $y=x^{2}$ is below the line $y=x+2$
(b) Find the set of values of x for which the curve with equation $\mathrm{y}=\frac{8}{x}, x \neq 0$, is below the line $y=1$
(c) Find the set of values of x for which the curve with equation $\mathrm{y}=\frac{4}{x-1}, x \neq 1$, is below the line $y=8$
(d) Find the set of values of x for which the curve with equation $\mathrm{y}=\frac{6}{x+2}, x \neq-2$, is above the line $y=8$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 8B
Skills 1 - Answers
(a) $(1,0) \min ,\left(-\frac{1}{3}, \frac{32}{27}\right) \max$
(b) $(1,2) \min ,(-1,-2) \max$
(c) $(3,27) \mathrm{min}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 8B
Skills 2 - Answers
(a) $-1<x<2$
(b) $x<0$ or $x>8$
(c) $x<1$ or $x>\frac{3}{2}$
(d) $-2<x<-1.25$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

1

(a) Calculate the discriminant of the quadratic polynomial $2 x^{2}+6 x+7$
(b) State the number of real roots of the equation $2 x^{2}+6 x+7=0$ and hence explain why $2 x^{2}+6 x+7$ is always positive
(c) The quadratic equation $k x^{2}+(4 k+1) x=-3 k-1$ has a repeated root. Find the value of the constant k.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 8B

2

The curve and the line given by the equations

$$
\begin{aligned}
& k x^{2}-x y+(k+1) x=1 \\
& -\frac{k}{2} x+y=1
\end{aligned}
$$

where k is a non-zero constant, intersect at a single point.
(a) Find the value of k.
(b) Give the coordinates of the point of intersection of the line and the curve

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

3

NEW TECHNQUES!

The modulus of a number a (written as $|a|$) is its positive numerical value. So $|2|=2$ and $|-2|=2$.

Sketch the following modulus graphs, writing down the co-ordinates of any points at which the graph meets the coordinate axes.
(a) $y=|2 x+3|$
(b) b) $y=\left|2 x^{2}+5 x-12\right|$
(c) $y=\left|2^{x}-2\right|$
(d) $y=|\sin 2 x|$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 8B

4

The diagram shows a box of mass 2 kg being pushed up a smooth plane by a horizontal force of magnitude 20N. The plane is inclined to the horizontal at an angle α, where $\tan \alpha=3 / 4$.

Find:-
(a) the normal reaction between the box and the plane,
(b) the acceleration of the box up the plane.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 8B

5

A particle of weight 12 N is suspended by a light inextensible string from a fixed point O . A horizontal force of 8 N is applied to the particle and the particle remains in equilibrium with the string at an angle θ to the vertical.

Find:-
(a) the angle θ
(b) the tension in the string.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 8B

6

A van of mass 1800 kg is being towed along a horizontal road with constant acceleration $0.5 \mathrm{~m} \mathrm{~s}^{-2}$ by a breakdown vehicle. The connecting tow bar is inclined at an angle of 40° to the horizontal, upwards from the van. Given that the tension in the tow bar is 1500 N ,
(a) calculate the magnitude of the force \boldsymbol{F} resisting the motion of the car.
(b) calculate the normal contact force of the van on the road.

Draw a diagram showing all the forces acting on the van, and explain in which direction you are resolving the forces.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 8B

7

A stone is thrown from a point A with speed $30 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 15° below the horizontal. The point A is 14 m above horizontal ground. The stone strikes the ground at the point B, as shown in the figure above. Find
a) the time the stone takes to travel from A to B.
b) the distance $A B$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 8B

8

NEW TECHNQUES!

AVECTOR quantity has both magnitude and direction, e.g. force, velocity, displacement.

A SCALAR quantity has only magnitude, e.g. time, speed
A girl cycles from A to B and then from B to C. The displacement from A to B is $10 \mathbf{i}+3 \mathbf{j} \mathrm{~km}$. The displacement from B to C is $-7 \mathbf{i}+12 \mathbf{j} \mathbf{k m}$.
(a) Find the magnitude of the displacement from A to C.

(b) Find the total distance the girl has cycled in getting from A to C.
(c) Work out the angle $\overrightarrow{A C}$ makes with the unit vector \mathbf{i}.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

9

The points A, B and C have position vectors $\left(\begin{array}{c}8 \\ -7 \\ 4\end{array}\right),\left(\begin{array}{c}8 \\ -3 \\ 3\end{array}\right)$ and $\left(\begin{array}{c}12 \\ -6 \\ 3\end{array}\right)$ respectively.
(a) Find the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{B C}$.
(b) Find $|\overrightarrow{A B}|,|\overrightarrow{A C}|$ and $|\overrightarrow{B C}|$ giving your answers in exact form.
(c) Describe triangle $A B C$.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

10

$$
y=4 x^{2}-x
$$

Use differentiation from first principles to show that $\frac{d y}{d x}=8 x-1$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

11

The motion of a damped spring is modelled using this graph.

On a separate graph, sketch the gradient function for this mode. Choose suitable labels and units for each axis, and indicate the coordinates of any points where the gradient function crosses the horizontal axis.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 8B

12

NEW TECHNQUES!

Functions; Composites, domain, range, inverses
The domain of a function is the possible inputs (x values), the range of a function is the possible outputs (y or $\mathrm{f}(\mathrm{x}$) values).

State the range for the given domain for the function $f(x)=2 x-3$

Domain $\mathrm{x}=\{-2,-1,0,1,2,3\}$

Domain $-2<x \leq 6$

Domain $x \in R(x$ is a member of the set of all real numbers)

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

1 - Answers

(a) -20
(b) no roots as $b^{2}-4 a c<0$ so the graph of $y=x^{2}+6 x+7$ does not cut the x axis and therefore $2 x^{2}+6 x+7$ is always positive.
(c) $k=\frac{-1}{2}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 8B
2 - Answers
(a) $k=-2$
(b) $(-1,2)$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

$$
3 \text { - Answers }
$$

Use desmos to check.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 8B

4 - Answers

(a) 27.7 N (3sf)
(b) $2.12 \mathrm{~ms}^{-2}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 8B

$$
5 \text { - Answers }
$$

(a) 33.7°
(b) 14.4 N

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 8B

$$
6 \text { - Answers }
$$

(a) $\mathrm{F}=249 \mathrm{~N}$
(b) $\mathrm{R}=16700 \mathrm{~N}$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 8B
7 - Answers
(a) 1.1 s (2 s.f.)
(b) 34 m (2 s.f.)

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 8B

8 - Answers

(a) 15.3 m
(b) 24.3 m
(c) 78.7°

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 8B

9 - Answers

(a) $\overrightarrow{A B}=4 \mathbf{j}-\mathbf{k}, \overrightarrow{A C}=4 \mathbf{i}+\mathbf{j}-\mathbf{k}, \overrightarrow{B C}=4 \mathbf{i}-3 \mathbf{j}$
(b) $|\overrightarrow{A B}|=\sqrt{17},|\overrightarrow{A C}|=3 \sqrt{2},|\overrightarrow{B C}|=5$
(c) scalene

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 8B
10 - Answers
Proof

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 8B
11 - Answers

BHASVIC Ma'THS A1 DOUBLES ASSIGMMENT 8B

12 - Answers

(a) Range
$f(x)=\{-7,-5,-3,-1,1,3\}$
(b) Range
$-7<\mathrm{f}(\mathrm{x}) \leq 9$
(c) Range
$f(x) \in R(x$ is a member of the set of all real numbers)

