BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 6B

Skills 1

(a) By completing the square, find the centre and radius of the circle $x^{2}+y^{2}+$ $4 x-6 y+10=0$
(b) $(x-2)^{2}+(y-4)^{2}=25$, show on a sketch the circle and the tangents from the point $(8,2)$
(c) Find the length of the tangents to the circle $(x+3)^{2}+(y+5)^{2}=30$ from the point $(-2,3)$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 6B

Skills 2

A particle at the origin is in equilibrium under the action of forces shown. Find the forces R and S
$R+$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 6B
Skills 1 - Answers
(a) $(-2,3) \sqrt{3}$
(b) Sketch
(c) $\sqrt{35}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 6B
Skills 2 - Answers

$$
R=6-\sqrt{3} N, S=3 \sqrt{3}+\frac{3}{2} N
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

1

A triangle has vertices $(2,3),(4,9),(5,2)$
(a) Find the exact perimeter of the triangle
(b) Prove that the triangle is right angled

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 6B

2

The circle C has equation $x^{2}+3 x+y^{2}+6 y=3 x-2 y-7$
(a) Find the centre and radius of the circle.
(b) Find the points of intersection of the circle and the y-axis
(c) Show that the circle does not intersect the x-axis

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 6B

3

STATICS

A particle of mass 3kg is held in equilibrium by two light inextensible strings. One string is horizontal. The other string is inclined at 45° to the horizontal, as shown in the figure. The tension in the horizontal string is $P \mathrm{~N}$ and the tension in the other string is $Q N$. Find
(a) the value of Q
(b) The value of P

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

4

An astronaut weighs 735 N on earth and 120 N on the moon. Work out the value of acceleration due to the gravity on the moon.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 6B

5

A mass of 3 kg rests on the surface of a smooth plane which is inclined at an angle of 45° to the horizontal. The mass is attached to a cable which passes up the plane along the line of greatest slope and then passes over a smooth pulley at the top of the plane. The cable carries a mass of 1 kg freely suspended at the other end. The masses are modelled as a particle, and the cable as a light inextensible string. There is a force of $P \mathrm{~N}$ acting horizontally on the 3kg mass and the system is in equilibrium. Calculate
(a) the magnitude of P
(b) the normal reaction between the mass and the plane.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 6B

6

(a) Find an equation of the tangent and the normal at the point where $x=2$ on the curve with equation $y=\frac{8}{x}-x+3 x^{2}, x>0$.
(b) The normals to the curve $2 y=3 x^{3}-7 x^{2}+4 x$, at the points $O(0,0)$ and $A(1,0)$, meet at the point N.
(i) Find the coordinates of N.
(ii) Calculate the area of triangle $O A N$.

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 6B

7

$\mathrm{f}(x)=x^{2}-2 \mathrm{x}-8$
(a) Sketch the graph of $y=\mathrm{f}(x)$
(b) On the same set of axes, sketch the graph of $y=\mathrm{f}^{\prime}(x)$
(c) Explain why the x-coordinate of the turning point of $y=\mathrm{f}(x)$ is the same as the x-coordinate of the point where the graph of $y=\mathrm{f}^{\prime}(x)$ crosses the x-axis

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

8
(a) Given that $P=2 x+\frac{100}{x}(x>0)$, find the value of x for which P is minimum.
Use the second derivative to justify your answer.
(b) $f(x)=x^{3}+4 x^{2}-3 x+7$

Find the set of values of x for which $f(x)$ is increasing

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 6B

9

NEW TECHNQUES!

Integration is the reverse of differentiation, so in terms of basic polynomials you add one the function and then divide by the new power. Every time we integrate, we need to put a +c at the end. Why might that be do you think?
For example if $\frac{d y}{d x}=x^{2}, y=\frac{x^{3}}{3}+c$ and if $\frac{d y}{d x}=4 x^{5} \quad y=\frac{2 x^{3}}{3}+c$. In general when $\frac{d y}{d x}=a x^{n}, y=\frac{a x^{n+1}}{n+1}+c$

We set out an integration like this $\int x^{2} d x=\frac{x}{3}+6$. Integrate the following:
(a) $\int x^{3} d x=$
(b) $\int 3 x^{2} d x=$
(c) $\int \frac{2}{5} x^{4} d x=$
(d) $\int 5 x^{\frac{3}{2}} d x=$
(e) $\int 2 x^{-2} d x=$

You can differentiate your answers to check they are correct.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 6B

10

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 6B

11

The figure above shows the graph of the curve with equation $y=f(x)$. The curve meets the x axis at $A(2,0)$ crosses the x axis a the point $B(6,0)$, and crosses the y axis at the point $C(0,4)$. The curve has a maximum at $M\left(\frac{9}{2}, \frac{9}{2}\right)$ Sketch on separate diagrams the graphs of
(a) $y=2 f(x)$
(b) $y=f(x+2)$
(c) $y=f\left(\frac{1}{2} x\right)$

BHASVIC Ma'THS A1 DOUBLES ASSIGNMENT 6B

12

Given that $x=-\frac{1}{2}$ is the real solution of the equation $2 x^{3}-11 x^{2}+14 x+10=0$, find the two complex solutions of this equation.

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

$$
1 \text { - Answers }
$$

(a) $3 \sqrt{10}+5 \sqrt{2}$
(b) Use Pythagoras or perpendicular gradients

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

2 - Answers

(a) Centre ($0,-4$) and radius $=3$
(b) (0, -1) and (0, -7)
(c) Students' own work. Equation $x^{2}=-7$ has no real solutions.

3 - Answers

(a) $R(\uparrow)$

$$
\begin{aligned}
& Q \sin 45-3 g=0 \\
& \begin{aligned}
\therefore Q & =\frac{3 g}{\sin 45} \\
& =3 \sqrt{2} g \\
& =42 \text { (2 s.f.) }
\end{aligned}
\end{aligned}
$$

(b) $R(\rightarrow)$

$$
Q \cos 45-p=0
$$

$$
\therefore P=3 \sqrt{2} g \cos 45^{\circ}
$$

$$
=3 g
$$

$$
=29 \text { (2 s.f.) }
$$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 6B
4 - Answers
$1.6 \mathrm{~m} \mathrm{~s}^{-2}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

5 - Answers

(a) Consider the 1 kg mass:
$R(\uparrow)$
$T-1 g=0$
$\therefore T=g=9.8$
Consider the 3kg mass:
$R(\nearrow)$
$T+P \cos 45-3 g \sin 45=0$
$\therefore P \cos 45=3 g \sin 45-T$
But $T=g$
$\therefore P \cos 45=3 g \sin 45-g$
$\therefore P=3 g-\frac{g}{\cos 45}$
$=3 g-g \sqrt{2}$
$=16$ (s.f.)

5 - Answers

(b) $R(\nwarrow)$
$R-P \sin 45-3 g \cos 45=0$
$\therefore R=P \sin 45+3 g \cos 45$

$$
\begin{aligned}
& =6 g \frac{\sqrt{2}}{2}-g \\
& =32(2 \text { s.f. })
\end{aligned}
$$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 6B

6 - Answers

(a) $9 x-y-4=0$ and $9 y+x \equiv 128=0$
(b)
(i) $\left(\frac{4}{5},-\frac{2}{5}\right)$
(ii) $\frac{1}{5}$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 6B

7 - Answers

(a) Sketches
(b) Discuss in class
(c) Discuss in class
(a) $5 \sqrt{2}$
(b) $x<-3$, OR $x>\frac{1}{3}$

9 - Answers

(a) $\frac{x^{4}}{4}+c$
(b) $x^{3}+c$
(c) $\frac{2}{25} x^{5}+c$
(d) $2 x^{\frac{5}{2}}+c$
(e) $-2 x^{-1}+c$

10 - Answers

$$
3<x<5 \text { and } \frac{15}{2}<x<9
$$

BHASVIC M α THS
A1 DOUBLES ASSIGNMENT 6B
11 - Answers
Sketches - discuss in class

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 6B
12 - Answers
$3 \pm i$

