BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5B

Skills 1

(i) Write down the equation of each circle:
(a) Centre (3,2), radius 4
(b) Centre $(-4,5)$, radius 6
(c) Centre $(5,-6)$, radius $2 \sqrt{3}$
(d) Centre $(2 a, 7 a)$, radius $5 a$
(e) Centre $(-2 \sqrt{2},-3 \sqrt{2})$, radius 1

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 5B

Skills 1

ii) By completing the square in the x terms and the y terms, write the following circle equations in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$, and hence state the centre and radius:
(a) $x^{2}+y^{2}-2 x+8 y-8=0$
(b) $x^{2}+y^{2}+12 x-4 y=9$
(c) $x^{2}+y^{2}-6 y=22 x-40$
(d) $x^{2}+y^{2}+5 x-y+4=2 y+8$
(e) $2 x^{2}+2 y^{2}-6 x+5 y=2 x-3 y-3$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 5B

Skills 2

Find the equation of the tangent to the following circles at the stated point, giving your answer in the form $a x+b y+c=0$
(a) $(x-1)^{2}+(y+2)^{2}=13$ at the point $(3,1)$
(b) $(x+3)^{2}+(y-5)^{2}=34$ at the point $(0,0)$
(c) $(x-3)^{2}+(y+2)^{2}=13$ at the point $(6,-4)$

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 5B

Skills 1 - Answers
i)
(a) $(x-3)^{2}+(y-2)^{2}=16$
(b) $(x+4)^{2}+(y-5)^{2}=36$
(c) $(x-5)^{2}+(y+6)^{2}=12$
(d) $(x-2 a)^{2}+(y-7 a)^{2}=25 a^{2}$
(e) $(x+2 \sqrt{2})^{2}+(y+3 \sqrt{2})^{2}=1$

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5B

Skills 1 - Answers
ii)
(a) Centre $(1,-4)$, radius 5
(b) Centre $(-6,2)$, radius 7
(c) Centre (11,3), radius $3 \sqrt{10}$
(d) Centre $\left(-\frac{5}{2}, \frac{3}{2}\right)$, radius $\frac{5 \sqrt{2}}{2}$
(e) Centre $(2,-2)$, radius $\sqrt{\frac{13}{2}}$

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5B
Skills 2 - Answers
(a) $2 x+3 y-9=0$
(b) $3 x-5 y=0$
(c) $3 x-2 y-26=0$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5B

1

(a) Given $f(x)=(x)=2 x^{2}-3 x+4$ and $g(x)=4 x+1$

Sketch the graphs of $y=f(x)$ and $y=g(x)$ on the same axes
(b) Find the coordinates of any points of intersection.
(c) Write down the set of values for which $f(x)>g(x)$
(d) Write down the set of values for which $f(x)<g(x)$

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5B

2

The number of bacteria in a refrigerated food is given by

$$
N=20 T^{2}+120-20 T, \quad T>0
$$

where T is the temperature of food in ${ }^{0} \mathrm{C}$
(a) Express N in the form $p(T-q)^{2}-r$ where p, q, r are integers to be found
(b) What is the minimal number of bacteria and what is the temperature when this occurs?
(c) Find the temperature to 3 sf when the number of bacteria is 140
(d) Explain why $T>0$.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5B

3

The curve C_{1} has equation $y=-\frac{a}{x^{2}}$ where a is a positive constant. The curve C_{2} has the equation $y=x^{2}(3 x+b)$ where b is a positive constant.
(a) Sketch C_{1} and C_{2} on the same set of axes, showing clearly the coordinates of any point where the curves touch of cross the axes.
(b) Using your sketch state, giving reasons, the number of solutions to the equation $x^{4}(3 x+b)+a=0$.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5B

4

The line l_{1} has equation $x+2 y-1=0$. The line l_{2} is perpendicular to l_{1} and passes through the point $A(1,5)$.
(a) Show that l_{1} and l_{2} cross at the point $(-1,1)$

The points $B(-3,2)$ and $C(3,-1)$ lie on l_{1}.
(b) Find the area of the triangle with vertices A, B, C.

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5B

5

(a) Find the equation of the circle where the points $(1,0)$ and $(3,0)$ are at either end of the diameter.
(b) The circle has a tangent at point A that also passes through the point $B(6,0)$. Find the distance $A B$.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5B

6

The circle C has equation $(x+5)^{2}+(y+3)^{2}=80$.

The line l is a tangent to the circle and has gradient 2.
Find two possible equations for l giving your answers in the form $y=m x+c$

BHASVIC M α 'THS
 A1 DOUBLES ASSIGNMENT 5B

7

A girl runs a 400 m race in a time of 84 s . In a model of this race, it is assumed that, starting from rest, she moves with constant acceleration for 4 s , reaching a speed of $5 \mathrm{~m} \mathrm{~s}^{-1}$. She maintains this speed for 60 s and then moves with constant deceleration for 20 s , crossing the finishing line with a speed of $V \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Sketch a speed-time graph for the motion of the girl during the whole race.
(b) Find the distance run by the girl in the first 64 s of the race.
(c) Find the value of V .
(d) Find the deceleration of the girl in the final 20 s of her race.

BHASVIC M α THS A1 DOUBLES ASSIGNMENT 5B

8

A racing car modelled as a particle starts from rest at the point A and moves in a straight line with constant acceleration for 30 s until it reaches point C. The speed of the car at C is $75 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Calculate the acceleration of the car.
(b) If B is a point between A and C such that $A B=245 \mathrm{~m}$, calculate the distance BC.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 5B

9

NEW TECHNOUES!

A 5 kg box rests on a smooth plane inclined at 20° to the horizontal. It is held in equilibrium by a light inextensible string acting parallel to the plane. What is the tension in the string?

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 5B

10

Three forces, of magnitude $10 \mathrm{~N}, 7 \mathrm{~N}$ and $P \mathrm{~N}$, act at a point in the directions as shown in the diagram.

The forces are in equilibrium. By resolving in appropriate directions,
(a) find the value of θ.
(b) find the value of P.

BHASVIC M α THS
 A1 DOUBLES ASSIGNMENT 5B

11

BHASVIC M α 'THS A1 DOUBLES ASSIGNMENT 5B

12

A ball is thrown from a point 4 m above horizontal ground. The ball is projected at an angle α above the horizontal, where $\tan \alpha=\frac{3}{4}$. The ball hits the ground at a point which is a horizontal distance 8 m from its point of projection, as shown.

The initial speed of the ball is $u \mathrm{~m} \mathrm{~s}^{-1}$ and the time of flight is T seconds.

BHASVIC MaTHS A1 DOUBLES ASSIGNMENT 5B

12
(a) Prove that $u T=10$.
(b) Find the value of u.

As the ball hits the ground, its direction of motion makes an angle \varnothing with the horizontal.
(c) Find $\tan \emptyset$.

A1 DOUBLES ASSIGNMENT 5B

1 - Answers

(a)

(b) $\left(\frac{1}{2}, 3\right)(3,13)$
(c) $x<\frac{1}{2}$ or $x>3$
(d) $\frac{1}{2}<x<3$

BHASVIC Ma'THS
 A1 DOUBLES ASSIGNMENT 5B

2 - Answers

(a) $p=20, q=0.5, r=115$
(b) $\operatorname{Min}=115$ when $\mathrm{T}=0.5$
(c) $1.62^{\circ} \mathrm{C}$
(d) The amount of bacteria doesn't increase if the temperature goes down

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 5B

3 - Answers

(a)

(b) 1; only one intersection of the two curves.

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B
4 - Answers
(a) $(-1,1)$
(b) 15

BHASVIC Ma'THS
A1 DOUBLES ASSIGNMENT 5B

$$
5 \text { - Answers }
$$

(a) $(x-2)^{2}+y^{2}=1$
(b) $\sqrt{15}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B

6 - Answers

$$
y=2 x+27 \text { and } y=2 x-13
$$

BHASVIC MaTHS
 A1 DOUBLES ASSIGNMENT 5B

7 - Answers
(b) 310 m
(c) $4 \mathrm{~ms}^{-1}$
(d) $0.05 \mathrm{~ms}^{-2}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B
8 - Answers
(a) $a=2.5 \mathrm{~ms}^{-2}$
(b) $\mathrm{BC}=880 \mathrm{~m}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B

9 - Answers

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B

10 - Answers

(a) $\theta=45.6^{\circ}$,
(b) $\mathrm{P}=7.14 \mathrm{~N}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B
11 - Answers
(a) $T=18.5 \mathrm{~N} \quad R=88.8 \mathrm{~N}$

BHASVIC M α 'THS
A1 DOUBLES ASSIGNMENT 5B
12 - Answers
(b) 7
(c) $7 / 4$

