Skills 1

- (i) Write down the equation of each circle:
- (a) Centre (3,2), radius 4
- (b) Centre (-4,5), radius 6
- (c) Centre (5, -6), radius $2\sqrt{3}$
- (d) Centre (2a, 7a), radius 5a
- (e) Centre $\left(-2\sqrt{2}, -3\sqrt{2}\right)$, radius 1

Skills 1

ii) By completing the square in the *x* terms and the *y* terms, write the following circle equations in the form $(x - a)^2 + (y - b)^2 = r^2$, and hence state the centre and radius:

(a) $x^{2} + y^{2} - 2x + 8y - 8 = 0$ (b) $x^{2} + y^{2} + 12x - 4y = 9$ (c) $x^{2} + y^{2} - 6y = 22x - 40$ (d) $x^{2} + y^{2} + 5x - y + 4 = 2y + 8$ (e) $2x^{2} + 2y^{2} - 6x + 5y = 2x - 3y - 3$

Skills 2

Find the equation of the tangent to the following circles at the stated point, giving your answer in the form ax + by + c = 0

- (a) $(x-1)^2 + (y+2)^2 = 13$ at the point (3, 1)
- (b) $(x + 3)^2 + (y 5)^2 = 34$ at the point (0, 0)
- (c) $(x-3)^2 + (y+2)^2 = 13$ at the point (6, -4)

Skills 1 - Answers

i)
(a)
$$(x - 3)^2 + (y - 2)^2 = 16$$

(b) $(x + 4)^2 + (y - 5)^2 = 36$
(c) $(x - 5)^2 + (y + 6)^2 = 12$
(d) $(x - 2a)^2 + (y - 7a)^2 = 25a^2$
(e) $(x + 2\sqrt{2})^2 + (y + 3\sqrt{2})^2 = 1$

Skills 1 - Answers

ii) (a) Centre (1, -4), radius 5 (b) Centre (-6,2), radius 7 (c) Centre (11,3), radius $3\sqrt{10}$ (d) Centre $\left(-\frac{5}{2},\frac{3}{2}\right)$, radius $\frac{5\sqrt{2}}{2}$ (e) Centre (2, -2), radius $\sqrt{\frac{13}{2}}$

Skills 2 – Answers

(a) 2x + 3y - 9 = 0

- (b) 3x 5y = 0
- (c) 3x 2y 26 = 0

1

(a) Given $f(x) = (x) = 2x^2 - 3x + 4$ and g(x) = 4x + 1Sketch the graphs of y = f(x) and y = g(x) on the same axes

(b) Find the coordinates of any points of intersection.

- (c) Write down the set of values for which f(x) > g(x)
- (d) Write down the set of values for which f(x) < g(x)

2

The number of bacteria in a refrigerated food is given by $N = 20T^2 + 120 - 20T, \quad T > 0$ where *T* is the temperature of food in ⁰C

- (a) Express N in the form $p(T-q)^2 r$ where p, q, r are integers to be found
- (b) What is the minimal number of bacteria and what is the temperature when this occurs?
- (c) Find the temperature to 3 sf when the number of bacteria is 140

(d) Explain why T > 0.

3

The curve C_1 has equation $y = -\frac{a}{x^2}$ where *a* is a positive constant. The curve C_2 has the equation $y = x^2(3x + b)$ where *b* is a positive constant.

- (a) Sketch C_1 and C_2 on the same set of axes, showing clearly the coordinates of any point where the curves touch of cross the axes.
- (b) Using your sketch state, giving reasons, the number of solutions to the equation $x^4(3x + b) + a = 0$.

4

The line l_1 has equation x + 2y - 1 = 0. The line l_2 is perpendicular to l_1 and passes through the point A(1, 5).

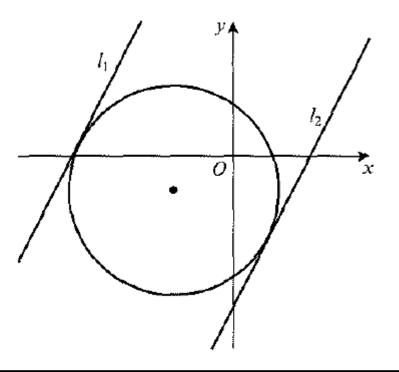
(a) Show that l_1 and l_2 cross at the point (-1, 1)

The points B(-3, 2) and C(3, -1) lie on l_1 .

(b) Find the area of the triangle with vertices A, B, C.

5

(a) Find the equation of the circle where the points (1, 0) and (3, 0) are at either end of the diameter.


(b) The circle has a tangent at point *A* that also passes through the point *B* (6, 0). Find the distance *AB*.

6

The circle C has equation $(x + 5)^2 + (y + 3)^2 = 80$.

The line l is a tangent to the circle and has gradient 2.

Find two possible equations for *l* giving your answers in the form y = mx + c

7

A girl runs a 400 m race in a time of 84 s. In a model of this race, it is assumed that, starting from rest, she moves with constant acceleration for 4 s, reaching a speed of 5 m s⁻¹. She maintains this speed for 60 s and then moves with constant deceleration for 20 s, crossing the finishing line with a speed of V m s⁻¹.

(a) Sketch a speed-time graph for the motion of the girl during the whole race.

(b) Find the distance run by the girl in the first 64 s of the race.

(c) Find the value of V.

(d) Find the deceleration of the girl in the final 20 s of her race.

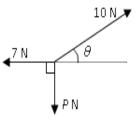
8

A racing car modelled as a particle starts from rest at the point *A* and moves in a straight line with constant acceleration for 30 s until it reaches point *C*. The speed of the car at *C* is 75 m s⁻¹.

(a) Calculate the acceleration of the car.

(b) If *B* is a point between *A* and *C* such that AB = 245 m, calculate the distance BC.

TAP FOR ANSWERS

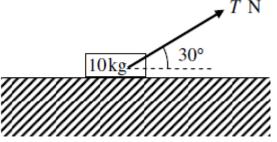

9

NEW TECHNIQUES!

A 5 kg box rests on a smooth plane inclined at 20° to the horizontal. It is held in equilibrium by a light inextensible string acting parallel to the plane. What is the tension in the string?

10

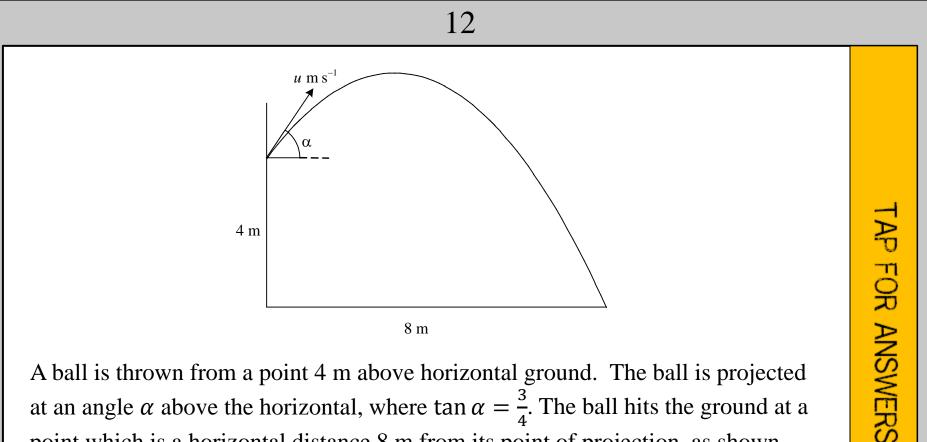
Three forces, of magnitude 10 N, 7N and *P* N, act at a point in the directions as shown in the diagram.



The forces are in equilibrium. By resolving in appropriate directions,

(a) find the value of θ .

(b) find the value of *P*.



The figure above shows a small box of mass of 10kg, pulled by a rope inclined at 30° to the horizontal, along rough horizontal ground

The tension in the rope is T N and the particle is accelerating at $0.4 m s^{-2}$. The box is modelled as a particle experiencing a frictional force of 12N and a formal reaction of R N.

Determine the value of T and the value of R.

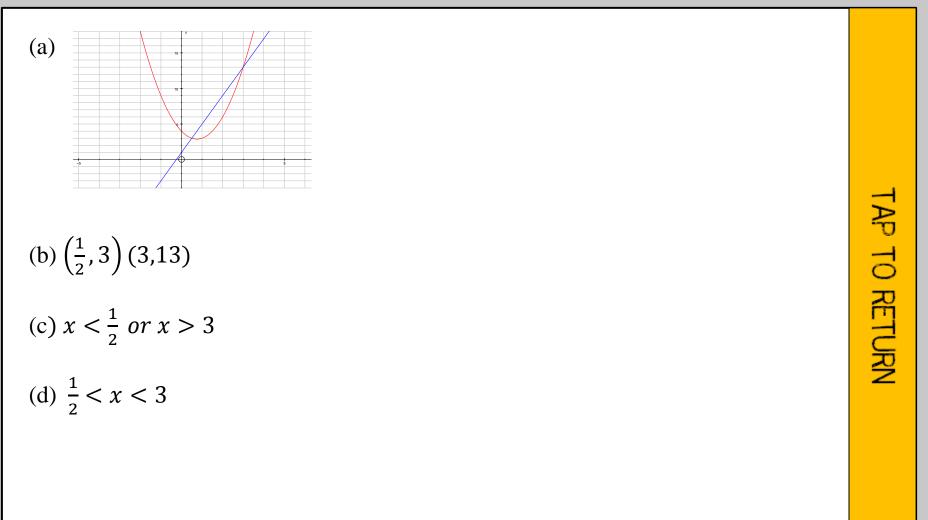
8 m

A ball is thrown from a point 4 m above horizontal ground. The ball is projected at an angle α above the horizontal, where $\tan \alpha = \frac{3}{4}$. The ball hits the ground at a point which is a horizontal distance 8 m from its point of projection, as shown.

The initial speed of the ball is u m s⁻¹ and the time of flight is T seconds.

12

(a) Prove that uT = 10.

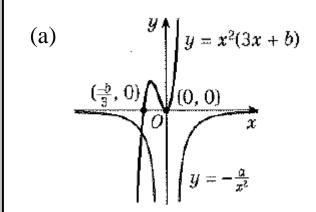

(b) Find the value of u.

As the ball hits the ground, its direction of motion makes an angle \emptyset with the horizontal.

(c) Find tan Ø.

TAP FOR ANSWERS

1 - Answers


2 - Answers

- (a) p = 20, q = 0.5, r = 115
- (b) Min = 115 when T = 0.5

(c) 1.62°C

(d) The amount of bacteria doesn't increase if the temperature goes down

3 - Answers

(b) 1; only one intersection of the two curves.

4 - Answers

(a)	(-1,1)

(b) 15

5 - Answers

(a) $(x-2)^2 + y^2 = 1$

(b) $\sqrt{15}$

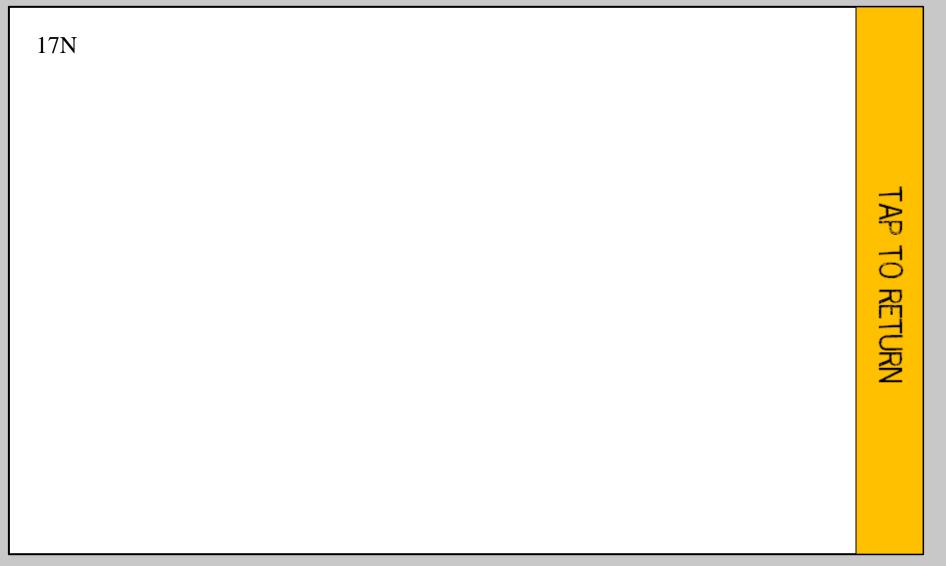
6 - Answers

y = 2x + 27 and y = 2x - 13

7 - Answers

(b) 310m

(c) 4ms⁻¹


(d) 0.05ms⁻²

8 - Answers

(a) $a = 2.5 \text{ms}^{-2}$

(b) BC = 880m

9 - Answers

10 - Answers

(a) θ =45.6°,

(b) P=7.14N

11 - Answers

(a) T = 18.5 N R = 88.8 N

12 - Answers

(b) 7	
(c) 7/4	
	TAP TO RETURN