A1 DOUBLES ASSIGNMENT 24 - PART B

Skills 1

Find the Cartesian equation of the curves given by the following parametric equations.
a $x=\sin t, \quad y=\sin \left(t+\frac{\pi}{4}\right), \quad-\frac{\pi}{2}<t<\frac{\pi}{2}$
b $x=3 \cos t, \quad y=2 \cos \left(t+\frac{\pi}{6}\right), \quad 0<t<\frac{\pi}{3}$
c $x=\sin t, \quad y=3 \sin (t+\pi), \quad 0<t<2 \pi$

Skills 2

Find the following integrals.
a $\int \frac{2\left(x^{2}+3 x-1\right)}{(x+1)(2 x-1)} \mathrm{d} x$
b $\int \frac{x^{3}+2 x^{2}+2}{x(x+1)} \mathrm{d} x$
c $\int \frac{x^{2}}{x^{2}-4} \mathrm{~d} x$
d $\int \frac{x^{2}+x+2}{3-2 x-x^{2}} \mathrm{~d} x$

PROBLEM SOLVING

1. Graph Transformations
a) Sketch the curve of $y=x^{3}+x^{2}-6 x$ showing clearly the coordinates of the points where the curve touches or crosses the axes.
b) The point with coordinates $(2,0)$ lies on the curve with equation $y=(x+a)^{3}-(x+a)^{2}-6(x+a)$ where a is a constant. Find the two possible values of a
2. Modulus graphs (inc inequality problems)
(a) Sketch the graph of $y=|2 x+a|, a>0$, showing the coordinates of the points where the graph meets the coordinate axes.
(b) On the same axes, sketch the graph of $y=\frac{1}{x}$.
(c) Explain how your graphs show that there is only one solution of the equation

$$
x|2 x+a|-1=0 .
$$

(d) Find, using algebra, the value of x for which $x|2 x+1|-1=0$.
a) And b) use graph sketching app c)1 d) ½
3. Graphical Inequalities
a) On a coordinate grid shade the region that satisfies the inequalities

$$
y+2 x \leq 4, y-2 x \leq 2, \quad x \geq 1
$$

b) Find the coordinates of the vertices of the shaded region ABC.
c) Find the area of the shaded region

4. Co-ordinate Geometry -line

Relative to a fixed origin O the points A, B and C have respective coordinates $(1,3),(1,11)$ and $(13, k)$, where k is a constant.
a) Find the length of $A B$, in the form $a \sqrt{17}$, where a is an integer.
b) Given the length of $B C$ is $3 \sqrt{17}$, , determine the possible values of k. The actual value of k is in fact the smaller of the two values found in part (b).
c) Show clearly that angle $A B C=90^{\circ}$.
d) Calculate the area of the triangle $A B C$.

5. Kinematics. Variable Acceleration.

A swimmer C swims with velocity $\mathrm{v} \mathrm{ms}^{-1}$ in a swimming pool. At time t seconds after starting,

$$
v=0.006 t^{2}-0.18 t+k
$$

where k is a constant. C swims from one end of the pool to the other in 28.4 seconds.
(a) Find the acceleration of C in terms of \boldsymbol{t}.
(b) Given that the minimum speed of C is $0.65 \mathrm{~ms}^{-1}$, show that $\mathrm{k}=2$.
(c) Express the distance travelled by C in terms of \boldsymbol{t}, and calculate the length of the pool.
6. Moments
a) A uniform plank AB of length 8 m and mass 20 kg rests on supports at C and D , where $\mathrm{AC}=\mathrm{DB}=1 \mathrm{~m}$.

i. A girl of mass 45 kg stands at B. Find the contact forces at C and D .
ii. What is the maximum mass that can be placed at B before the plank starts to tip?
b) A non-uniform rod AB of length 3 m and mass 5 kg is suspended in equilibrium in a horizontal position by vertical ropes attached to points P and Q of the rod. $\mathrm{AP}=1 \mathrm{~m}$ and $\mathrm{AQ}=2.5 \mathrm{~m}$. The tensions in the ropes are equal. Find the distance of the centre of mass of the rod from A .
c) A uniform ladder AB of mass M kg and length 5 m rests with end A on a smooth horizontal floor and end B against a smooth vertical wall. The ladder is held in equilibrium at an angle θ to the floor
by a light horizontal string attached to the wall and to a point C on the ladder. If $\tan \theta=2$, find the tension in the string when the length AC is 2 m .
7. Connected Rates

Flowers at a florists are stored in vases which are in the shape of hollow inverted right circular cones with height 72 cm and radius 18 cm .
One such vase is initially empty and placed under a tap where the water is flowing into the vase at the constant rate of $6 \pi \mathrm{~cm}^{3} \mathrm{~s}^{-1}$
a) Show that the volume, $\mathrm{Vcm}{ }^{3}$, of the water in the vase is given by $V=\frac{1}{48} \pi h^{3}$, where h cm is the height of the water in the vase.
b) Find the rate at which h is rising when $\mathrm{h}=4 \mathrm{~cm}$.
c) Determine the rate at which h is rising 12.5 minutes after the vase was placed under the tap.
8. During a chemical reaction, a compound is being made from two other substances. At time t hours after the start of the reaction, $x \mathrm{~g}$ of the compound has been produced. Assuming that x $=0$ initially, and that

$$
\frac{d x}{d t}=2(x-6)(x-3)
$$

(a) Show that it takes approximately 7 minutes to produce 2 g of the compound.
(b) Explain why it is not possible to produce 3 g of the compound.
9. Given that $y=2$ at $x=\frac{\pi}{8}$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y^{2}}{2 \sin ^{2} 2 x}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
10. A curve is given by the parametric equations $x=2 t^{2}-1, y=3(t+1)$. Find the points of intersection of this curve and the line with equation $3 x-4 y=3$
11.

Figure 5
Figure 5 shows a sketch of part of the curve with equation $y=2-\ln x, \quad x>0$
The finite region R, shown shaded in Figure 5, is bounded by the curve, the x-axis and the line with equation $x=\mathrm{e}$.

The table below shows corresponding values of x and y for $y=2-\ln x$

x	e	$\frac{\mathrm{e}+\mathrm{e}^{2}}{2}$	e^{2}
y	l		0

(a) Complete the table giving the value of y to 4 decimal places.
(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the area of R, giving your answer to 3 decimal places.
(c) Show that $\int(\ln x)^{2} \mathrm{~d} x=x(\ln x)^{2}-2 x \ln x+2 x+c$
12. a) using a suitable substitution of your choosing $\int \frac{1}{1-x^{\frac{1}{2}}} d x$
b) using integration by parts, find the exact integral: $\int_{2}^{3} x^{3} e^{x^{2}} d x$
c) using the substitution $x=2 \sin u, \quad \int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} d x$
d) $\int 2 x(\ln 3 x)^{2} d x$

